The Musca domestica antifungal peptide-1A (MAF-1A peptide) from housefly larvae was synthesized by solid-phase synthesis technique, and antiviral, antioxidant, and antifungal properties were evaluated in this study. Present results indicated that it could significantly inhibit the infection of influenza virus HN, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), and Bombyx mori nuclear polyhydrosis virus (BmNPV), which displayed excellent virucidal activities. Antioxidant results demonstrated that the MAF-1A peptide had effective scavenging activity for hydroxyl and superoxide radicals, which were similar to that of ascorbic acid. Besides, antifungal results showed that it can also significantly inhibit the growth of four fungi, and the half inhibitory concentrations (IC) values were ∼59.3, 84.2, 144.9, and 48.5 μg/ml, respectively, highlighting an important role of MAF-1A peptide in the defense of M domestica against pathogenic microorganisms. These results revealed that the MAF-1A peptide from housefly larvae has great potential as a natural ingredient for the exploitation of antiviral and antifungal therapeutic agents, avoiding abuse of chemical agents and environmental pollution.
Insect pheromone-binding proteins (PBPs) have been proposed to capture and transport hydrophobic sex pheromone components emitted by con-specific insects to pheromone receptors in the hemolymph of male antennal sensilla. In this study, field trapping results indicate that a mixture of E11–16: Ald and Z11–16: Ald can effectively attract a great number of male Tryporyza intacta. Real-time PCR results suggest that the transcript levels of three TintPBP1-3 genes are mainly expressed in the adult antennae. Fluorescence competitive binding experiments show that TintPBP1-3 proteins have great binding affinities to their major sex pheromones. Moreover, TintPBPs clearly cannot bind to other four kinds of sex pheromone components released by another sugarcane borer, Chilo venosatus and Chilo infuscatellu, which have the same host plant and live in similar habitats like T. intacta. The molecular docking results demonstrate that six amino acid residues of the three TintPBPs are crucial for the specific perception of the sex pheromone components. These results will provide a foundation for the development of novel sex pheromone analogues and blocking agents for biological control of sugarcane pests, improving their efficient monitoring and integrated management strategies in the sugarcane field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.