Graphene is a unique attractive material owing to its characteristic structure and excellent properties. To improve the preparation efficiency of graphene, reduce defects and costs, and meet the growing market demand, it is crucial to explore the improved and innovative production methods and process for graphene. This review summarizes recent advanced graphene synthesis methods including “bottom-up” and “top-down” processes, and their influence on the structure, cost, and preparation efficiency of graphene, as well as its peeling mechanism. The viability and practicality of preparing graphene using polymers peeling flake graphite or graphite filling polymer was discussed. Based on the comparative study, it is potential to mass produce graphene with large size and high quality using the viscoelasticity of polymers and their affinity to the graphite surface.
Wood formation involves sequential developmental events requiring the coordination of multiple hormones. Brassinosteroids (BRs) play a key role in wood development, but little is known about the cellular and molecular processes that underlie wood formation in tree species. Here, we generated transgenic poplar lines with edited PdBRI1 genes, which are orthologs of Arabidopsis vascular-enriched BR receptors, and showed how inhibition of BR signaling influences wood development at the mRNA and/or proteome level. Six Populus PdBRI1 genes formed three gene pairs, each of which was highly expressed in basal stems. Simultaneous mutation of PdBRI1–1, −2, −3 and − 6, which are orthologs of the Arabidopsis vascular-enriched BR receptors BRI1, BRL1 and BRL3, resulted in severe growth defects. In particular, the stems of these mutant lines displayed a discontinuous cambial ring and patterning defects in derived secondary vascular tissues. Abnormal cambial formation within the cortical parenchyma was also observed in the stems of pdbri1–1;2;3;6. Transgenic poplar plants expressing edited versions of PdBRI1–1 or PdBRI1–1;2;6 exhibited phenotypic alterations in stem development at 4.5 months of growth, indicating that there is functional redundancy among these PdBRI1 genes. Integrated analysis of the transcriptome and proteome of pdbri1–1;2;3;6 stems revealed differential expression of a number of genes/proteins associated with wood development and hormones. Concordant (16%) and discordant (84%) regulation of mRNA and protein expression, including wood-associated mRNA/protein expression, was found in pdbri1–1;2;3;6 stems. This study found a dual role of BRs in procambial cell division and xylem differentiation and provides insights into the multiple layers of gene regulation that contribute to wood formation in Populus.
Callus is a reprogrammed transitional cell mass during plant regeneration. Pluripotent callus cells develop into fertile shoots through de novo shoot organogenesis. This study represents a pioneering effort in exploring the spatial transcriptome of tomato callus during shoot regeneration, using technologies including BGI Stereo-seq, BMKMANU S1000, and 10x Visium. The results indicate that the callus comprises highly heterogeneous cells, classified into various cell types based on spatial gene expression and histological observation, including epidermis, shoot primordium, vascular tissue, inner callus, and outgrowth shoots. The developmental trajectories from shoot primordium to outgrowth shoot are traced, and vascular tissue development is characterized. The single-cell resolution spatial approach reveals the origin of shoot primordia from the sub-epidermis. The spatial full length RNA sequencing shows high incompletely spliced (IS) ratios in the shoot primordium cells. These findings enhance our knowledge of plant organogenesis and highlight the significance of spatial biology in plant research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.