Background: Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis, inside four common house types in rural southeastern Tanzania. Methods: The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6 a.m.-8 a.m.), evenings (6 p.m.-8 p.m.) and at night (11 p.m.-12.00 a.m.) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets). Results: Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus; 60-66% of An. arabiensis). Conclusion: While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.
The most important malaria vectors in sub-Saharan Africa are Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, and Anopheles coluzzii. Of these, An. funestus presently dominates in many settings in east and southern Africa. While research on this vector species has been impeded by difficulties in creating laboratory colonies, available evidence suggests it has certain ecological vulnerabilities that could be strategically exploited to greatly reduce malaria transmission in areas where it dominates. This paper examines the major life-history traits of An. funestus, its aquatic and adult ecologies, and its responsiveness to key interventions. It then outlines a plausible strategy for reducing malaria transmission by the vector and sustaining the gains over the medium to long term. To illustrate the propositions, the article uses data from south-eastern Tanzania where An. funestus mediates over 85% of malaria transmission events and is highly resistant to key public health insecticides, notably pyrethroids. Both male and female An. funestus rest indoors and the females frequently feed on humans indoors, although moderate to high degrees of zoophagy can occur in areas with large livestock populations. There are also a few reports of outdoor-biting by the species, highlighting a broader range of behavioural phenotypes that can be considered when designing new interventions to improve vector control. In comparison to other African malaria vectors, An. funestus distinctively prefers permanent and semi-permanent aquatic habitats, including river streams, ponds, swamps, and spring-fed pools. The species is therefore well-adapted to sustain its populations even during dry months and can support year-round malaria transmission. These ecological features suggest that highly effective control of An. funestus could be achieved primarily through strategic combinations of species-targeted larval source management and high quality insecticide-based methods targeting adult mosquitoes in shelters. If done consistently, such an integrated strategy has the potential to drastically reduce local populations of An. funestus and significantly reduce malaria transmission in areas where this vector species dominates. To sustain the gains, the programmes should be complemented with gradual environmental improvements such as house modification to maintain biting exposure at a bare minimum, as well as continuous engagements of the resident communities and other stakeholders.
Background Agricultural pesticides may exert strong selection pressures on malaria vectors during the aquatic life stages and may contribute to resistance in adult mosquitoes. This could reduce the performance of key vector control interventions such as indoor-residual spraying and insecticide-treated nets. The aim of this study was to investigate effects of agrochemicals on susceptibility and fitness of the malaria vectors across farming areas in Tanzania. Methods An exploratory mixed-methods study was conducted to assess pesticide use in four villages (V1–V4) in south-eastern Tanzania. Anopheles gambiae (s.l.) larvae were collected from agricultural fields in the same villages and their emergent adults examined for insecticide susceptibility, egg-laying and wing lengths (as proxy for body size). These tests were repeated using two groups of laboratory-reared An. arabiensis, one of which was pre-exposed for 48 h to sub-lethal aquatic doses of agricultural pesticides found in the villages. Results Farmers lacked awareness about the linkages between the public health and agriculture sectors but were interested in being more informed. Agrochemical usage was reported as extensive in V1, V2 and V3 but minimal in V4. Similarly, mosquitoes from V1 to V3 but not V4 were resistant to pyrethroids and either pirimiphos-methyl or bendiocarb, or both. Adding the synergist piperonyl butoxide restored potency of the pyrethroids. Pre-exposure of laboratory-reared mosquitoes to pesticides during aquatic stages did not affect insecticide susceptibility in emergent adults of the same filial generation. There was also no effect on fecundity, except after pre-exposure to organophosphates, which were associated with fewer eggs and smaller mosquitoes. Wild mosquitoes were smaller than laboratory-reared ones, but fecundity was similar. Conclusions Safeguarding the potential of insecticide-based interventions requires improved understanding of how agricultural pesticides influence important life cycle processes and transmission potential of mosquito vectors. In this study, susceptibility of mosquitoes to public health insecticides was lower in villages reporting frequent use of pesticides compared to villages with little or no pesticide use. Variations in the fitness parameters, fecundity and wing length marginally reflected the differences in exposure to agrochemicals and should be investigated further. Pesticide use may exert additional life cycle constraints on mosquito vectors, but this likely occurs after multi-generational exposures. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.