Irrigation with sewage-contaminated water poses a serious threat to food security, particularly in developing countries. Heavy metal tolerant bacteria are sustainable alternatives for the removal of wastewater contaminants. In the present study, four lead (Pb)-tolerant strains viz. Bacillus megaterium (N8), Bacillus safensis (N11), Bacillus sp. (N18), and Bacillus megaterium (N29) were inoculated in spinach and grown in sewage water treated earthen pots separately and in combination with canal water. Results showed that Pb-tolerant strains significantly improved plant growth and antioxidant activities in spinach and reduces metal concentration in roots and leaves of spinach plants irrigated with treated wastewater. Strain Bacillus sp. (N18) followed by B. safensis (N11) caused the maximum increase in shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, and leaf area compared to the uninoculated control of sewage water treated plants. These strains also improved antioxidant enzymatic activity including catalase, guaiacol peroxidase dismutase, superoxide dismutase, and peroxidases activities compared to the uninoculated control under sewage water conditions. Strain Bacillus sp. (N18) followed by B. safensis (N11) showed the highest reduction in nickel, cadmium, chromium, and Pb contents in roots and leaves of spinach compared to the uninoculated control plants treated with the sewage water. Such potential Pb-tolerant Bacillus strains could be recommended for the growth promotion of spinach after extensive evaluation under field conditions contaminated with wastewater.
Many farmers’ incomes in developing countries depend on the cultivation of major crops grown in arid and semi-arid regions. The agricultural productivity of arid and semi-arid areas primarily relies on chemical fertilizers. The effectiveness of chemical fertilizers needs to improve by integration with other sources of nutrients. Plant growth-promoting bacteria can solubilize nutrients, increase plant nutrient uptake, and supplement chemical fertilizers. A pot experiment evaluated the promising plant growth-promoting bacterial strain’s effectiveness in promoting cotton growth, antioxidant enzymes, yield, and nutrient uptake. Two phosphate solubilizing bacterial strains (Bacillus subtilis IA6 and Paenibacillus polymyxa IA7) and two zinc solubilizing bacterial strains (Bacillus sp. IA7 and Bacillus aryabhattai IA20) were coated on cotton seeds in a single as well as co-inoculation treatments. These treatments were compared with uninoculated controls in the presence and absence of recommended chemical fertilizer doses. The results showed the co-inoculation combination of Paenibacillus polymyxa IA7 and Bacillus aryabhattai IA20 significantly increased the number of bolls, seed cotton yield, lint yield, and antioxidants activities, including superoxide dismutase, guaiacol peroxidase, catalase, and peroxidase. Co-inoculation combination of Bacillus subtilis IA6 and Bacillus sp. IA16 promoted growth attributes, including shoot length, root length, shoot fresh weight, and root fresh weight. This co-inoculation combination also increased soil nutrient content. At the same time, Paenibacillus polymyxa IA7 + Bacillus aryabhattai IA20 increased nutrient uptake by plant shoots and roots compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.