BackgroundThe prevalence of gestational diabetes mellitus (GDM) is increasing globally which is associated with various side effects for mothers and fetus. It seems that metabolomic profiling of the amino acids may be useful in early diagnosis of metabolic diseases. This study aimed to explore the association of the amino acids profiles with GDM.MethodsEighty three pregnant women with gestational age ≥25 weeks were randomly selected among pregnant women referred to prenatal care clinic in Arash hospital of Tehran, Iran. Women divided into three groups including 1) 25 pregnant women with normal glucose tolerance test, 2) 27 pregnant women with diabetes type 2 (T2D) (n: 27) and 3) 31 women with GDM (n: 31). Plasma levels of amino acids were measured by high performance liquid chromatography and were compared in three groups. Statistical analysis was performed using SPSS 16.ResultsCompared with normal mothers, GDM mothers showed higher plasma concentrations of Arginine (P = 0.01), Glycine (P = 0.01) and Methionine (P = 0.04), whereas the pregnant women with T2D had higher plasma levels of Asparagine (P = 0.01), Tyrosine (P < 0.01), Valine (P < 0.01), Phenylalanine (P < 0.01), Glutamine (P < 0.01) and Isolucine (P < 0.01). The results of regression analyses confirmed the significantly elevated in plasma concentration of Asparagine (OR:3.64, CI 1.22–10.47), Threonine (OR:3.38, CI 1.39–8.25), Aspartic acid (OR:3.92, CI 1.19–12.91), Phenylalanine (OR:2.66, CI 1.01–6.94), Glutamine (OR:2.53, CI 1.02–6.26) and Arginine (OR:1.96, CI 1.02–3.76) after adjustment for gestational age and BMI in GDM mothers compared to normal ones.ConclusionsAmino acids levels are associated with risk of GDM and diabetes mellitus. However further prospective studies are needed to clarify the role of different metabolites involved in mechanism of GDM.
Objective To compare the effects of resistance and aerobic training (RT and AT) on spexin (SPX), appetite, lipid accumulation product (LAP), visceral adiposity index (VAI), and body composition in type 2 diabetes mellitus (T2DM) patients. Materials and Methods: Thirty-six T2DM men were randomized to receive RT ( n = 12), AT ( n = 12), or to act as a non-exercise control (CON, n = 12) 3 days a week for 12 weeks. Results: SPX was increased after both RT and AT (66.2% and 46.5%, respectively). VAI, LAP, and homeostasis model assessment-insulin resistance (HOMA-IR) were reduced in both groups, while quantitative insulin sensitivity check index (Quicki) and McAuley’s indexes were increased following both interventions. However, the increases of both hunger and PFC in the RT group were greater than those of the AT. Moreover, the improvement of upper-body strength (41% vs. 10.3%) and lower-body strength (42.2% vs. 20.5%) in the RT group was greater than those of the AT. Conclusion: Our investigation shows that regardless of the modes of the regimen, a 12-week exercise intervention with RT and AT can effectively induce a significant improvement in SPX levels, appetite, LAP, VAI, and body composition in adults with T2DM.
Understanding how environmental factors shape patterns of genetic and phenotypic variations in a species is necessary for conservation and plant breeding. However, these factors have not yet been completely understood in tuberous orchid species used to make ‘Salep’, an important ingredient in traditional medicine and beverages in middle eastern countries and India. In many areas, increasing demand has pushed species to the brink of extinction. In this study, 198 genotypes from 18 populations of the endangered species Orchis mascula L. spanning a large-scale climatic gradient in northern Iran were used to investigate patterns of genetic diversity and plant functional traits. Populations were sampled from three land cover types (woodland, shrubland, and pastureland/grassland). Plant height, stem length, number of flowers, bulb fresh and dry weight, glucomannan, and starch concentrations showed high variation among populations and were significantly related to land cover type. In general, genetic diversity was high, particularly in those from eastern Hyrcanian; additionally, populations showed a high level of genetic differentiation (G'st = 0.35) with low gene flow (Nm = 0.46). The majority of genetic differentiation occurred within populations (49%) and land cover types (20%). The population structural analysis using the AFLP marker data in K = 4 showed a high geographical affinity for 198 O. mascula genotypes, with some genotypes having mixed ancestry. Temperature and precipitation were found to shape genetic and phenotypic variation profoundly. Significant isolation by the environment was observed, confirming the strong effect of environmental variables on phenotypic and genetic variation. Marker-trait association studies based on MLM1 and MLM2 models revealed significant associations of P-TGG + M-CTT-33 and E-AGG + M-CGT-22 markers with plant height and glucomannan content. Overall, a combination of large-scale climatic variables and land cover types significantly shaped genetic diversity and functional trait variation in O. mascula populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.