This study is a review on controlling an electronic device (Arduino) apply for temperature and soil moisture process using Android based Smart phone application in order to address the issues of flexibility and functionality. Beside, this study in future will also develop a low cost and flexible for agriculture control due to not to incorporate with an expensive components such as high end personal computers. On peak of that, now anyone, from anytime and anywhere can have connectivity for anything and it is expected that these connections will extend and create an entirely advanced dynamic network of the internet of things. Thus, this study is to review several design of smart monitoring system using an embedded micro-web server, with IP connectivity for accessing. There are three principal components in this study, which are an electronic device (Arduino), software development (eclipse), and system prototype internet protocol layer. The aim is to build the web organization and ultimately to combine all three components together. The solution of this whole study is a complete review to design a complete application with an electronic device that can help landlord agriculture to start out a dependable quality product in the marketplace.
-Traffic congestion problem is a phenomena which contributed huge impact to the transportation system in country. This causes many problems especially when there are emergency cases at traffic light intersections which are always busy with many vehicles. A traffic light controller system is designed in order to solve these problems. This system was designed to be operated when it received signal from emergency vehicles based on radio frequency (RF) transmission and used the Programmable Integrated Circuit (PIC) 16F877A microcontroller to change the sequence back to the normal sequence before the emergency mode was triggered. This system will reduce accidents which often happen at the traffic light intersections because of other vehicle had to huddle for given a special route to emergency vehicle. As the result, this project successful analyzing and implementing the wireless communication; the radio frequency (RF) transmission in the traffic light control system for emergency vehicles. The prototype of this project is using the frequency of 434 MHz and function with the sequence mode of traffic light when emergency vehicles passing by an intersection and changing the sequence back to the normal sequence before the emergency mode was triggered. In future, this prototype system can be improved by controlling the real traffic situation, in fact improving present traffic light system technology.
Kretschmann-based surface plasmon resonance sensor utilizing chromium and gold nanofilms is ideal for label-free biomedical sensing. In this work, Taguchi’s L9 orthogonal array method was used to optimize the effects of three control factors and noise factor, which are the incident optical wavelength, chromium and gold nanofilm thicknesses, and their root-mean-square surface roughness, on the performance of the Kretschmann-based surface plasmon resonance sensor. The control factors were varied at three levels for a novel multi-response optimization of the Kretschmann-based surface plasmon resonance sensor for the minimum reflectivity, the full-width-at-half-maximum, and the sensitivity of 3% glucose detection, executed using Lumerical’s two-dimensional finite-difference time-domain method. Using Taguchi method, the best control factor setting in air was A3B2C2 corresponding to 785 nm optical wavelength, 0.5 nm chromium, and 50 nm gold layer thickness, respectively, with minimum reflectivity of 0.0017%, full-width-at-half-maximum of 0.4759°, and glucose-sensing sensitivity of 106.73°·RIU−1. The detection accuracy and quality factor were 0.01 and 224.26 RIU−1, respectively. It was also indicated that chromium nanofilm thickness of 0.5–3 nm and its root-mean-square surface roughness has a negligible factor effect compared to other control factors. Taguchi method’s factor effect analysis showed that for chromium layer thickness of 1–3 nm, the minimum reflectivity values are predominantly determined by the gold layer thickness with 75% factor effect, followed by optical wavelength with 11%. Factor effect of full-width-at-half-maximum is determined by optical wavelength (57%), followed by gold layer thickness (38%). Sensitivity is 88% determined by optical wavelength and 10% determined by gold layer thickness. The Kretschmann-based surface plasmon resonance glucose sensor with the best glucose-sensing sensitivity was at optical wavelength of 632.8 nm with a higher sensitivity value of 163.415°·RIU−1 but lower detection accuracy and quality factor values of 0.001 and 24.86 RIU−1, respectively, compared to near-infrared wavelength of 785 nm. In conclusion, finite-difference time-domain and Taguchi method is suitable for multi-response optimization of control and noise factors of Kretschmann-based surface plasmon resonance sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.