Abstract-We have assessed robust tracking of humans based on intelligent Sound Source Localization (SSL) for a robot in a real environment. SSL is fundamental for robot audition, but has three issues in a real environment: robustness against noise with high power, lack of a general framework for selective listening to sound sources, and tracking of inactive and/or noisy sound sources. To address the first issue, we extended Multiple SIgnal Classification by incorporating Generalized EigenValue Decomposition (GEVD-MUSIC) so that it can deal with high power noise and can select target sound sources. To address the second issue, we proposed Sound Source Identification (SSI) based on hierarchical gaussian mixture models and integrated it with GEVD-MUSIC to realize a selective listening function. To address the third issue, we integrated audio-visual human tracking using particle filtering. Integration of these three techniques into an intelligent human tracking system showed: 1) GEVD-MUSIC improved the noise-robustness of SSL by a signal-to-noise ratio of 5-6 dB; 2) SSI performed more than 70% in F-measure even in a noisy environment; and 3) audiovisual integration improved the average tracking error by approximately 50%.
Abstrad-A modulation scheme is proposed for synthesizing a dual-mode optical BPSK signal pair with an orthogonal phase relationship, which affords generation of orthogonal dual-mode optical signals for QPSK or SCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.