Inertia-visual sensor fusion has become popular due to the complementary characteristics of cameras and IMUs. Once the spatial and temporal alignment between the sensors is known, the fusion of measurements of these devices is straightforward. Determining the alignment, however, is a challenging problem. Especially the spatial translation estimation has turned out to be difficult, mainly due to limitations of camera dynamics and noisy accelerometer measurements. Up to now, filtering-based approaches for this calibration problem are largely prevalent. However, we are not convinced that calibration, as an offline step, is necessarily a filtering issue, and we explore the benefits of interpreting it as a batch-optimization problem. To this end, we show how to model the IMU-camera calibration problem in a nonlinear optimization framework by modeling the sensors' trajectory, and we present experiments comparing this approach to filtering and system identification techniques. The results are based both on simulated and real data, showing that our approach compares favorably to conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.