Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it has gradually become the main disease burden in the world. However, the pathogenesis of NAFLD is complex, involving such things as dyslipidemia, oxidative stress, inflammation, etc. This brings to the table a significant challenge for drug development, and there is still no drug approved by the FDA on the market to treat the disease. GAS and HBA are active ingredients of the orchidaceae plant gastrodia elata and have exhibit effects in ameliorating nervous system diseases caused by oxidative stress. HBA is a metabolite of GAS that could perform lipid regulation and improve oxidative stress on HCD-induced NAFLD larval zebrafish, as reported by previous studies; we therefore explored the role of HBA in lipid regulation and oxidative stress on HCD-induced NAFLD larval zebrafish in vivo and FFA-induced BRL-3A hepatocyte in vitro. The gene expression of lipogenesis, inflammation, and oxidative stress were measured to investigate the underlying mechanism of HBA, and the potential protein target of HBA was explored by immunofluorescence. Altogether, our data highlight the role of HBA in improving NAFLD by use of its lipid-lowering and anti-oxidative properties via the Nrf2/HO-1 signaling pathway, providing a potential therapeutic compound for NAFLD treatment.
A new rosane-type diterpenoid (1) along with nine known diterpenoids (2–10), were isolated from the dried roots of Euphorbia nematocypha. The absolute configuration was elucidated from spectroscopic (nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism) and optical-rotation analyses. Cytotoxicity and the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals were determined. Compound 1 showed remarkable cytotoxicity against human cancer cell lines (HeLa, CT26, and HCC 1806) in vitro. The interaction between compound 1 and proteins of ribosomal S6 kinase was revealed using molecular docking and provided valuable insights into the cytotoxic mechanism of action of compound 1. The latter could be developed as a pharmaceutical agent in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.