Deep learning is a promising tool to determine the physical model that describes our universe. To handle the considerable computational cost of this problem, we present CosmoFlow: a highly scalable deep learning application built on top of the TensorFlow framework. CosmoFlow uses efficient implementations of 3D convolution and pooling primitives, together with improvements in threading for many element-wise operations, to improve training performance on Intel ® Xeon Phi™ processors. We also utilize the Cray PE Machine Learning Plugin for efficient scaling to multiple nodes.We demonstrate fully synchronous data-parallel training on 8192 nodes of Cori with 77% parallel efficiency, achieving 3.5 Pflop/s sustained performance. To our knowledge, this is the first large-scale science application of the TensorFlow framework at supercomputer scale with fully-synchronous training. These enhancements enable us to process large 3D dark matter distribution and predict the cosmological parameters ΩM , σ8 and ns with unprecedented accuracy.
Extracting actionable insight from complex unlabeled scientific data is an open challenge and key to unlocking data-driven discovery in science. Complementary and alternative to supervised machine learning approaches, unsupervised physics-based methods based on behavior-driven theories hold great promise. Due to computational limitations, practical application on real-world domain science problems has lagged far behind theoretical development. However, powerful modern supercomputers provide the opportunity to narrow the gap between theory and practical application. We present our first step towards bridging this divide -DisCo -a high-performance distributed workflow for the behavior-driven local causal state theory. DisCo provides a scalable unsupervised physics-based representation learning method that decomposes spatiotemporal systems into their structurally relevant components, which are captured by the latent local causal state variables. Complex spatiotemporal systems are generally highly structured and organize around a lower-dimensional skeleton of coherent structures, and in several firsts we demonstrate the efficacy of DisCo in capturing such structures from observational and simulated scientific data. To the best of our knowledge, DisCo is also the first application software developed entirely in Python to scale to over 1000 machine nodes, providing good performance along with ensuring domain scientists' productivity. We developed scalable, performant methods optimized for Intel many-core processors that will be upstreamed to open-source Python library packages. Our capstone experiment, using newly developed DisCo workflow and libraries, performs unsupervised spacetime segmentation analysis of CAM5.1 climate simulation data, processing an unprecedented 89.5 TB in 6.6 minutes end-to-end using 1024 Intel Haswell nodes on the Cori supercomputer obtaining 91% weak-scaling and 64% strong-scaling efficiency. This enables us to achieve state-of-the-art unsupervised segmentation of coherent spatiotemporal structures in complex fluid flows.Recently, supervised DL techniques have been applied to address this problem [24], [25], [26] including one of the 2018 Gordon Bell award winners [27]. However, there is an immediate and daunting challenge for these supervised approaches: ground-truth labels do not exist for pixel-level identification of extreme weather events [21]. The DL models used in the above studies are trained using the automated heuristics of TECA [20] for proximate labels. While the results in [24] qualitatively show that DL can improve upon TECA, the results in [26] reach accuracy rates over 97%, essentially reproducing the output of TECA. The supervised learning paradigm of optimizing objective metrics (e.g. training and generalization error) breaks down here [8] since TECA is not ground truth and we do not know how to train a DL model to disagree with TECA in just the right way to get closer to "ground truth".
COVID-19 pandemic has a significant impact on the global health and daily lives of people living over the globe. Several initial tests are based on the detecting of the genetic material of the coronavirus, and they have a minimum detection rate with a time-consuming process. To overcome this issue, radiological images are recommended where chest X-rays (CXRs) are employed in the diagnostic process. This article introduces a new Multi-modal fusion of deep transfer learning (MMF-DTL) technique to classify COVID-19. The proposed MMF-DTL model involves three main processes, namely pre-processing, feature extraction, and classification. The MMF-DTL model uses three DL models namely VGG16, Inception v3, and ResNet 50 for feature extraction. Since a single modality would not be adequate to attain an effective detection rate, the integration of three approaches by the use of decision-based multimodal fusion increases the detection rate. So, a fusion of three DL models takes place to further improve the detection rate. Finally, a softmax classifier is employed for test images to a set of six different. A wide range of experimental result analyses is carried out on the Chest-X-Ray dataset. The proposed fusion model is found to be an effective tool for COVID-19 diagnosis using radiological images with the average sens y of 92.96%, spec y of 98.54%, prec n of 93.60%, accu y of 98.80%, F score of 93.26% and kappa of 91.86%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.