We demonstrate beam steering using a passive silica optical phased array (OPA) with wavelength tuning. In this OPA, a constant path difference is built up to assign sequential phase delays with a wavelength variation in arrayed waveguide channels for the beam steering. From as-fabricated 1 × 101 passive silica OPA chips, we successfully achieved beam forming with a transversal divergence angle of 0.57° at a 1548.3-nm wavelength and also beam steering of 15.4° by wavelength tuning of 30.7 nm. Combining a cylindrical lens in front of the end-fire radiators, the longitudinal divergence angle could be reduced from 13.0° to 0.42°. The side-mode suppression ratio of the beam was 10.3 dB at the center position. Through simulation, we analyzed the effects of the phase errors on the beam quality, due to the effective index fluctuation of the waveguide channels, and provided an allowable error range to attain beam forming from the passive OPA.
Precise imaging in three-dimension (3D) is an essential technique for solid-state light detection and ranging (LiDAR). Among various solid-state LiDAR technologies, silicon (Si) optical phased array (OPA)-based LiDAR has the significant advantage of robust 3D imaging due to its high scanning speed, low power consumption, and compactness. Numerous techniques employing a Si OPA have utilized two-dimensional arrays or wavelength tuning for longitudinal scanning but the operation of those systems is restricted by additional requirements. Here, we demonstrate high-accuracy 3D imaging using a Si OPA with a tunable radiator. As we adapted a time-of-flight approach for distance measurement, we have developed an optical pulse modulator that allows a ranging accuracy of less than 2 cm. The implemented Si OPA is composed of an input grating coupler, multimode interferometers, electro-optic p-i-n phase shifters, and thermo-optic n-i-n tunable radiators. With this system, it is possible to attain a wide beam steering range of 45° in a transversal angle with a 0.7° divergence angle, and 10° in a longitudinal angle with a 0.6° divergence angle can be achieved using Si OPA. The character toy model was successfully imaged in three dimensions with a range resolution of 2 cm using the Si OPA. The further improvement of each component of the Si OPA will allow even more accurate 3D imaging over a longer distance.
The authors demonstrate integrated 1D optical phased arrays (OPAs) for wide-angle 2D beam-steering. The 2D OPA consists of 16 1D transversal steering OPAs whose radiators have different grating periods, to assign different longitudinal angles. The transversal steering of each OPA is performed by the phase control of the p-in electrooptic phase shifter array. The 1D transversal steering OPAs operate serially, changing the longitudinal radiation angle. The grating radiators were designed with an array pitch of 2 μm, and a varying period in the range of 610-710 nm. The entire 16 × (1 × 16) OPAs were integrated into a small area of 26.5 mm 2. The obtained transversal/longitudinal beam-steering range was 46°/44°, respectively, with a wavelength of 1560 nm, which enables wide 2D beam-steering.
We demonstrate two-dimensional beam steering through wavelength control using a one-dimensional optical phased array (OPA) in which a path difference is built up in each channel to allocate a phase delay sequentially. Prior to the beam steering through wavelength tuning, phase initialization was performed to form a single beam using electro-optic p-i-n phase shifters to compensate for the phase error due to fabrication imperfections. With a 79.6 μm path difference in the phase-feeding lines and a 2 μm pitch in the grating radiators, we achieved a continuous transversal steering of about 46° through a wavelength tuning of about 7 nm. By extending the wavelength tuning range to 90 nm, longitudinal steering was attained near 13° with a discrete interval of about 1°. The beam was maintained during full two-dimensional steering and experienced only a small degree of degradation in the beam divergences and in the side lobe level. We analyzed the parameters to be able to induce the degradation of beam quality considering the fabrication errors of the geometric parameters of the OPA. The results indicated that the scanning scheme employing wavelength tuning after initialization with phase shifters can greatly reduce the realignment process of the beam pattern, even in the presence of some effective index perturbation during the fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.