Violent typhoons continue to have catastrophic impacts on economies and welfare, but how they are responding to global warming has yet to be fully understood. Here, an empirical framework is used to explain physically why observations support a tight connection between increasing ocean warmth and the increasing intensity of supertyphoons in the western North Pacific. It is shown that the energy needed for deep convection is on the rise with greater heat and moisture in the lower tropical troposphere but that this energy remains untapped when air pressure is high. Accordingly, tropical cyclone formation is becoming less common, but those that do form are likely to reach extreme intensities from the discharge of stored energy. These thermodynamic changes to the environment most significantly influence the upper portion of extreme typhoon intensities, indicating that supertyphoons are likely to be stronger at the expense of overall tropical cyclone occurrences in the western North Pacific.
Research on trends in western North Pacific tropical cyclone (TC) activity is limited by problems associated with different wind speed conversions used by the various meteorological agencies. This paper uses a quantile method to effectively overcome this conversion problem. Following the assumption that the intensity ranks of TCs are the same among agencies, quantiles at the same probability level in different data sources are regarded as having the same wind speed level. Tropical cyclone data from the Joint Typhoon Warning Center (JTWC) and Japan Meteorological Agency (JMA) are chosen for research and comparison. Trends are diagnosed for the upper 45% of the strongest TCs annually. The 27-yr period beginning with 1984, when the JMA began using the Dvorak (1982) technique, is determined to be the most reliable for achieving consensus among the two agencies regarding these trends. The start year is a compromise between including as many years in the data as possible, but not so many that the period includes observations that result in inconsistent trend estimates. The consensus of TC trends between the two agencies over the period is interpreted as fewer but stronger events since 1984, even with the lower power dissipation index (PDI) in the western North Pacific in recent years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.