Perovskite solar cells fabricated with inexpensive and simple technology exhibits high efficiency has witnessed worldwide boom in research. The optimization of solar cell can be done through modeling and simulation. The optical and electrical modeling are the ways to optimize different parameter such as thickness, defect density, doping density and material selection for fabricating stable and highly efficient perovskite solar cells. In this research work, electrical modeling of solar cell is done throughSolar Cell Capacitance Simulator(SCAPS-1D).The architecture of the solar cell is n-i-p device structure. CH3NH3PbI3-xClx acts as light absorber active layer, TiO2 as electron transport layer and Spiro-OMeTADas hole transport layer with device structure FTO/ TiO2/ CH3NH3PbI3-xClx/ Spiro-OMeTAD/Au. The open circuit voltage Voc, short circuit current density Isc, fill factor and power conversion efficiency are 1.28 V, 21.63 mA/cm2, 0.78 and 21.53% respectively. The result showed that the optimize parameter can be applied for fabrication of the solar cell experimentally. Various metal contact materials of the anodeare also studied and analyzed.
Perovskite-silicon tandem solar cells have attracted much attention to photovoltaic community because of their high efficiency via easy fabrication methods and availability of precursor material abundant in nature. The properties of both perovskite and silicon meet ideal solar cell standards such as high light absorption potential, long carrier diffusion length and fast charge separation process. Semi-transparent solar cell with widely tunable band gap of perovskite material is compatible with silicon solar cell for tandem structures. A perovskite-silicon tandem solar cell four terminal configuration optimization was performed through numerical simulation. The optimized four terminal perovskite-silicon tandem solar cell performances was investigated by varying the thickness of top and bottom solar cell absorber layers, defect density of the absorber layer, and temperature. Perovskite-silicon tandem solar cell showed better photovoltaic performance under constant illumination condition. A high performance mechanically attached four terminal (4-T) perovskite-silicon tandem solar cell has total power conversion efficiency (PCE) of 34.88% by optimized parameters through simulation. It has shown 37% efficiency with matched current of 23.71mA/cm2. These numerical simulation results are provided the parameter values for further experimental assignment.
Research of lead-free perovskite solar cells has gained speedy and growing attention with urgent intent to eliminate toxic lead in perovskite materials. The environmental friendliness and excellent thermal stability proves of stable perovskite Cesium Tin Iodide (CsSnI3) as one of the promising materials for their potential application in solar field. In this paper, fabrication and characterization of CsSnI3 perovskite layer has been reported. Fabrication of CsSnI3 perovskite layer was made by spin coating method. One step coating processed CsSnI3 layer have characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Optical properties of layer have investigated by Vis-NIR spectrophotometer. It reveals that CsSnI3 perovskite layer possess good absorption in the visible spectrum. XRD result confirms the crystal structure of orthorhombic phase with dominating peak at 27.50 (2*Θ) corresponding (202) planes. Dense distributions of polycrystalline CsSnI3 perovskite layer were recorded by FESEM images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.