Intense present work is directed on the fabrication and application of Poly (serine) modified graphite carbon nanotube composite paste electrode (PSR/CNTPE) for determining the Riboflavin (RF). The surface qualities of the projected sensor were observed by Field Emission Scanning Electron Microscopy (FE-SEM) and the conductivity by Electrochemical Impedance Spectroscopy (EIS) method. The electrochemical redox activity of the PSR/CNTPE to RF was investigated through Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Outcomes displays that Poly (serine) in CNTPE enhanced the catalytic performance of the electrode towards the redox reaction of RF. The voltammetric response of PSR/CNTPE exhibited linear dependence for extended concentration range of RF from 6 μM to 50 μM with lower detection limit of 3.4 × 10 À 8 M.The PSR/CNTPE revealed to be reproducible, highly stable and successfully validated for the pharmaceutical, beverage and milk samples. The fabricated electrode was conducive and displayed two well-separated oxidation signals for the solution containing two vitamins RF and Folic Acid (FA). The projected sensor is an adequate candidate for electrochemical sensing of RF.
The electrochemically initiated catalytic oxidation of amino acid L-tryptophan (L-TPN) in phosphate buffer solution has been scrutinized using highly conductive polymethionine modified carbon nanotube paste sensor (PMETCNTPS) through cyclic voltammetry (CV) technique. Compared to the bare carbon nanotube paste sensor (BCNTPS), PMETCNTPS exhibited a quantifiable current signal by CV method. PMETCNTPS was found sensitive to L-TPN concentrations within the linear segment of detection range 1.5 - 8.0×10-5 M. By employing the calibration plot, the detection limit was determined as 6.99×10-7 M. In addition, PMETCNTPS was successfully exploited and validated in determining L-TPN in the pharmaceutical supplement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.