The purpose of this pilot study was to investigate whether transcranial static magnetic field stimulation (tSMS), which can modulate cortical excitability, would influence inhibitory control function when applied over the dorsolateral prefrontal cortex (DLPFC). Young healthy adults (n = 8, mean age ± SD = 24.4 ± 4.1, six females) received the following stimulations for 30 min on different days: (1) tSMS over the left DLPFC, (2) tSMS over the right DLPFC, and (3) sham stimulation over either the left or right DLPFC. The participants performed a Go/NoGo task before, immediately after, and 10 min after the stimulation. They were instructed to extend the right wrist in response to target stimuli. We recorded the electromyogram from the right wrist extensor muscles and analyzed erroneous responses (false alarm and missed target detection) and reaction times. As a result, 50% of the participants made erroneous responses, and there were five erroneous responses in total (0.003%). A series of statistical analyses revealed that tSMS did not affect the reaction time. These preliminary findings suggest the possibility that tSMS over the DLPFC is incapable of modulating inhibitory control and/or that the cognitive load imposed in this study was insufficient to detect the effect.
Transcranial static magnetic field stimulation (tSMS) can modulate human cortical excitability and behavior. To better understand the neuromodulatory effect of tSMS, this study investigates whether tSMS applied over the left dorsolateral prefrontal cortex (DLPFC) modulates working memory (WM) performance and its associated event-related potentials (ERPs). Thirteen healthy participants received tSMS or sham stimulation over the left DLPFC for 26 min on different days. The participants performed a 2-back version of the n-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after the stimulation. We examine reaction time for correct responses, d-prime reflecting WM performance, and the N2 and P3 components of ERPs. Our results show that there was no effect of tSMS on reaction time. The d-prime was reduced, and the N2 latency was prolonged immediately after tSMS. These findings indicate that tSMS over the left DLPFC affects WM performance and its associated electrophysiological signals, which can be considered an important step toward a greater understanding of tSMS and its use in studies of higher-order cognitive processes.
Transcranial static magnetic stimulation (tSMS) has been known to reduce human cortical excitability. Here, we investigated whether tSMS would modulate visuo-spatial cognition in healthy humans. Subjects performed a visuo-spatial task requiring judgements about the symmetry of pre-bisected lines. Visual stimuli consisted of symmetrically or asymmetrically transected lines, tachystoscopically presented for 150 ms on a computer monitor. Task performance was examined before, immediately after, and 10 min after tSMS/sham stimulation of 20 min over the posterior parietal cortex (PPC: P4 from the international 10–20 system) or superior temporal gyrus (STG: C6). Nine out of 16 subjects misjudged pre-bisected lines by consistently underestimating the length of the right-side segment (judging lines to be exactly pre-bisected when the transector was located to the left of the midpoint, or judging the left-side segment to be longer when the transector was located at the midpoint). In these subjects showing a leftward bias, tSMS over the right STG reduced the magnitude of the leftward bias. This did not occur with tSMS over the right PPC or sham stimulation. In the remaining right-biased subjects, no intervention effect was observed with any stimulation. Our findings indicate that application of tSMS over the right STG modulates visuo-spatial cognition in healthy adults.
In daily life, the meaning of color plays an important role in execution and inhibition of a motor response. For example, the symbolism of traffic light can help pedestrians and drivers to control their behavior, with the color green/blue meaning go and red meaning stop. However, we don’t always stop with a red light and sometimes start a movement with it in such a situation as drivers start pressing the brake pedal when a traffic light turns red. In this regard, we investigated how the prior knowledge of traffic light signals impacts reaction times (RTs) and event-related potentials (ERPs) in a Go/No-go task. We set up Blue Go/Red No-go and Red Go/Blue No-go tasks with three different go signal (Go) probabilities (30, 50, and 70%), resulting in six different conditions. The participants were told which color to respond (Blue or Red) just before each condition session but didn’t know the Go probability. Neural responses to Go and No-go signals were recorded at Fz, Cz, and Oz (international 10–20 system). We computed RTs for Go signal and N2 and P3 amplitudes from the ERP data. We found that RT was faster when responding to blue than red light signal and also was slower with lower Go probability. Overall, N2 amplitude was larger in Red Go than Blue Go trial and in Red No-go than Blue No-go trial. Furthermore, P3 amplitude was larger in Red No-go than Blue No-go trial. Our findings of RT and N2 amplitude for Go ERPs could indicate the presence of Stroop-like interference, that is a conflict between prior knowledge about traffic light signals and the meaning of presented signal. Meanwhile, the larger N2 and P3 amplitudes in Red No-go trial as compared to Blue No-go trial may be due to years of experience in stopping an action in response to a red signal and/or attention. This study provides the better understanding of the effect of prior knowledge of color on behavioral responses and its underlying neural mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.