Results of anticorrosive performance of ionic liquid 1-methyl-1-propyl-piperidinium bromide (MPPB) on corrosion of 6061Al-10vol% SiC composite (Al-MMC) in 0.05 M HCl solution. Electrochemical techniques were adopted to study corrosion and corrosion inhibition rates. Experiments were conducted in the temperature range of 308–323 K by varying concentrations of MPPB. Conditions were standardized to accomplish maximum inhibition efficiency. Kinetic parameters were evaluated. Results were fitted into various adsorption isotherm models and they fitted best into the Langmuir adsorption isotherm. Using data from adsorption isotherms, thermodynamic parameters were calculated. The surface morphology was examined by energy-dispersive X-ray spectroscopy (EDAX), atomic force microscope (AFM), and scanning electron microscope (SEM). FTIR–spectra and X-ray diffraction (XRD) studies were performed to reaffirm the adsorption of MPPB. Adsorption of the inhibitor and mechanistic aspects of corrosion inhibition were supported and supplemented by quantum chemical calculations using density functional theory (DFT). The investigation revealed that percentage inhibition efficiency (% IE) improved with the increase in the concentration of MPPB, while it decreased with a rise in temperature. Maximum efficiency of 60% was observed with 400 ppm MPPB at 308 K. MPPB acted as a mixed inhibitor, obeyed the Langmuir adsorption model, and the mode of adsorption was physisorption. Quantum chemical calculations validated the results of the adsorption study.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.