We are in the golden age of AI. Developing AI software for computer games is one of the most exciting trends of today’s day and age. Recently games like Hearthstone Bat- tlegrounds have captivated millions of players due to it’s sophistication, with an infinite number of unique interactions that can occur in the game. In this research, a Monte-Carlo simulation was built to help players achieve higher ranks. This was achieved through a learned simulation which was trained against a top Hearthstone Battleground player’s historic win. In our experiment, we collected 3 data sets from strategic Hearthstone Bat- tleground games. Each data set includes 6 turns of battle phases, 42 minions for battle boards, and 22 minions for Bob’s tavern. The evaluation demonstrated that the AI assis- tant achieved better performance — loosing on average only 9.56% of turns vs 26.26% for the experienced Hearthstone Battleground players, and winning 56% vs 46.91%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.