The p-n junction is one important and fundamental building block of the optoelectronic age. However, electrons and holes will be severely scattered in heterostructures led by the grain boundary at the alloy interface between two dissimilar semiconductors. In this work, we present boron phosphide (BP) nanowires with artificially controllable carrier type for the fabrication of homojunctions via adjusting borane/phosphine ratio during the deposition process, both prove high crystallization with fewer impurities. The homojunctions that consist of n-type and p-type BP nanowires show apparent photovoltaic effect [external quantum efficiency ≈ 10% under a ∼0.4 pW light @ 600 nm] and the quenched photoluminescence within the junction area, which indicates the effective separation and transfer of photogenerated charge carriers at the interface. The achievement of controllable carrier type implemented in the same material ushers in a frontier for the design of nanoscale homojunctions toward advanced optoelectronic devices.
This retrospective evaluation demonstrated that overused and misused cephalosporins caused a relatively high incidence of ADEs. Therefore, surveillance should be strengthened successfully to optimize the rational use of cephalosporins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.