This paper is concerned with positive α -times resolvent families on an ordered Banach space E (with normal and generating cone), where 0 < α ≤ 2 . We show that a closed and densely defined operator A on E generates a positive exponentially bounded α -times resolvent family for some 0 < α < 1 if and only if, for some ω ∈ ℝ , when λ > ω , λ ∈ ρ A , R λ , A ≥ 0 and sup λ R λ , A : λ ≥ ω < ∞ . Moreover, we obtain that when 0 < α < 1 , a positive exponentially bounded α -times resolvent family is always analytic. While A generates a positive α -times resolvent family for some 1 < α ≤ 2 if and only if the operator λ α − 1 λ α − A − 1 is completely monotonic. By using such characterizations of positivity, we investigate the positivity-preserving of positive fractional resolvent family under positive perturbations. Some examples of positive solutions to fractional differential equations are presented to illustrate our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.