This paper introduces cosmoDC2, a large synthetic galaxy catalog designed to support precision dark energy science with the Large Synoptic Survey Telescope (LSST). CosmoDC2 is the starting point for the second data challenge (DC2) carried out by the LSST Dark Energy Science Collaboration (LSST DESC). The catalog is based on a trillion-particle, (4.225 Gpc) 3 box cosmological N-body simulation, the 'Outer Rim' run. It covers 440 deg 2 of sky area to a redshift of z = 3 and is complete to a magnitude depth of 28 in the r-band. Each galaxy is characterized by a multitude of properties including stellar mass, morphology, spectral energy distributions, broadband filter magnitudes, host halo information and weak lensing shear. The size and complexity of cosmoDC2 requires an efficient catalog generation methodology; our approach is based on a new hybrid technique that combines data-driven empirical approaches with semi-analytic galaxy modeling. A wide range of observation-based validation tests has been implemented to ensure that cosmoDC2 enables the science goals of the planned LSST DESC DC2 analyses. This paper also represents the official release of the cosmoDC2 data set, including an efficient reader that facilitates interaction with the data.
We explore the effectiveness of deep learning convolutional neural networks (CNNs) for estimating strong gravitational lens mass model parameters. We have investigated a number of practicalities faced when modelling real image data, such as how network performance depends on the inclusion of lens galaxy light, the addition of colour information and varying signal-to-noise. Our CNN was trained and tested with strong galaxy-galaxy lens images simulated to match the imaging characteristics of the Large Synoptic Survey Telescope (LSST) and Euclid. For images including lens galaxy light, the CNN can recover the lens model parameters with an acceptable accuracy, although a 34 per cent average improvement in accuracy is obtained when lens light is removed. However, the inclusion of colour information can largely compensate for the drop in accuracy resulting from the presence of lens light. While our findings show similar accuracies for single epoch Euclid VIS and LSST r-band data sets, we find a 24 per cent increase in accuracy by adding g-and i-band images to the LSST r-band without lens light and a 20 per cent increase with lens light. The best network performance is obtained when it is trained and tested on images where lens light exactly follows the mass, but when orientation and ellipticity of the light is allowed to differ from those of the mass, the network performs most consistently when trained with a moderate amount of scatter in the difference between the mass and light profiles.
The vast quantity of strong galaxy-galaxy gravitational lenses expected by future large-scale surveys necessitates the development of automated methods to efficiently model their mass profiles. For this purpose, we train an approximate Bayesian convolutional neural network (CNN) to predict mass profile parameters and associated uncertainties, and compare its accuracy to that of conventional parametric modelling for a range of increasingly complex lensing systems. These include standard smooth parametric density profiles, hydrodynamical EAGLE galaxies and the inclusion of foreground mass structures, combined with parametric sources and sources extracted from the Hubble Ultra Deep Field. In addition, we also present a method for combining the CNN with traditional parametric density profile fitting in an automated fashion, where the CNN provides initial priors on the latter’s parameters. On average, the CNN achieved errors 19 ± 22 per cent lower than the traditional method’s blind modelling. The combination method instead achieved 27 ± 11 per cent lower errors over the blind modelling, reduced further to 37 ± 11 per cent when the priors also incorporated the CNN-predicted uncertainties, with errors also 17 ± 21 per cent lower than the CNN by itself. While the CNN is undoubtedly the fastest modelling method, the combination of the two increases the speed of conventional fitting alone by factors of 1.73 and 1.19 with and without CNN-predicted uncertainties, respectively. This, combined with greatly improved accuracy, highlights the benefits one can obtain through combining neural networks with conventional techniques in order to achieve an efficient automated modelling approach.
Cosmological numerical simulations of galaxy formation have led to the cuspy density profile of pure cold dark matter halo toward the center, which is in sharp contradiction with the observations of the rotation curves of cold dark matter-dominated dwarf and low surface brightness disk galaxies, the latter tends to favor mass profiles with a flat central core. Many efforts have been devoted to resolve this cusp-core problem in recent years, among them, baryon-cold dark matter interactions are considered to be the main physical mechanisms erasing the cold dark matter (CDM) cusp into a flat core in the centers of all CDM halos. Clearly, baryon-cold dark matter interactions are not customized only for CDM-dominated disk galaxies, but for all types, including giant ellipticals. In this paper, we first fit the most recent high resolution observations of rotation curves with the Burkert profile, then use the constrained core size-halo mass relation to calculate the lensing frequency, and compare the predicted results with strong lensing observations. Unfortunately, it turns out that the core size constrained from rotation curves of disk galaxies cannot be extrapolated to giant ellipticals. We conclude that, in standard cosmological paradigm, baryon-cold dark matter interactions are not universal mechanisms for galaxy formation, and therefore, they cannot be true solutions to the cusp-core problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.