Deng-Zhan-Xi-Xin injection is a well-known traditional Chinese medicine prescription for the treatment of cardiovascular and cerebral vessel diseases. However, there have been few reports on its chemical constituents and metabolic pathway, which has blocked its further quality control and studies on its pharmacology and mechanism of action. In this study, an integrative method was established to rapidly explore the chemical constituents and metabolites of Deng-Zhan-Xi-Xin injection using ultra high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and the UNIFI™ software combined with multiple data processing approaches. As a result, a total of 40 compounds, including 9 flavonoids and 31 phenolic acids were identified or tentatively characterized, and five compounds were first reported in Deng-Zhan-Xi-Xin injection. Under the same analysis conditions, 70 compounds have been detected in rats, including 25 prototypes and 45 metabolites. This was the first systematic research study on the metabolic profiling of Deng-Zhan-Xi-Xin injection. This study provides valuable chemical information for the quality control and research on pharmacology and mechanism of action of Deng-Zhan-Xi-Xin injection. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other traditional Chinese medicine prescriptions.
Xiaojin Capsule, a classic traditional Chinese medicine formula, has been used to treat mammary cancer, thyroid nodules, and hyperplasia of the mammary glands. However, its systematic chemical information remained unclear, which hindered the interpretation of the pharmacology and the mechanism of action of this drug. In this research, an ultra high performance liquid chromatography coupled with a quadrupole time‐of‐flight mass spectrometry method was developed to identify the complicated components and metabolites of Xiaojin Capsule. Two acquisition modes, including the MSEnergy mode and fast data directed acquisition mode, were utilized for chemical profiling. As a result, 156 compounds were unambiguously or tentatively identified by comparing their retention times and mass spectrometry data with those of reference standards or literature. After the oral administration of Xiaojin Capsule, 53 constituents, including 24 prototype compounds and 29 metabolites, were detected in rat plasma. The obtained results were beneficial for a better understanding of the therapeutic basis of Xiaojin Capsule. A high‐resolution and efficient separation method was firstly established for systematically characterizing the compounds of Xiaojin Capsule and the associated metabolites in vivo, which could be helpful for quality control and pharmacokinetic studies of this medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.