Cytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1β, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19.
Short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber contribute a significant proportion of daily energy requirement. Furthermore, these compounds are modulators of macrophage function and potential targets for the development of new drugs. The aims of this study were to evaluate the effects of three types of SCFAs (sodium acetate (NaAc), sodium propionate (NaP), and sodium butyrate (NaB)) on the production of NO and inducible nitric oxide synthase (iNOS) and proinflammatory and antiinflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin (IL-1, IL-6, and IL-10)) and to observe the effect of NaAc on inhibiting lipopolysaccharide (LPS)-induced NF-κB activation in LPS-stimulated RAW264.7 cells. The results show that three types of SCFAs (acetate, propionate, and butyrate) reduced the production of proinflammatory factors, including TNF-α, IL-1β, IL-6, and NO, and inhibited the vitality of iNOS. Meanwhile, SCFAs enhanced the production of antiinflammatory cytokine IL-10 in lower concentrations (1-1,200 μmol/L). Like NaB, NaAC inhibited LPS-induced NF-κB activation. These results may hold promise on the role that SCFAs have on the prevention and treatment of various inflammatory conditions.
Objectives
Hypervirulent Klebsiella pneumoniae(hvKp) is an increasingly important pathogen. Tracking its epidemiology and evolving antimicrobial resistance will facilitate care.
Methods
A retrospective study was conducted in two hospitals. We collected the clinical data. Antimicrobial and virulence-associated phenotype and genotype, sequence type, and whole genome sequencing of selected strains were performed. HvKp was defined by the presence of some combination of
p
rmpA,
p
rmpA2, iucA, iroB, and peg-344, genes shown to accurately identify hvKp.
Results
Of 158 Kp clinical isolates, 79 (50%) were hvKp. Interestingly, 53/79 (67.1%) of hvKp strains were isolated from patients with nosocomial infection and 19/79 (24.1%) from patients with healthcare-associated infection, but only 7/79 (8.8%) from patients with community-acquired infections. Importantly, 27/53 (50.9%) and 4/19 (21.1%) of hvKp nosocomial and healthcare-associated isolates, respectively, were multi-drug-resistant (MDR); 25/53 (47.2%) and 5/19 (26.3%) expressed ESBLs and 14/53 (26.4%) and 2/19 (10.5%) were carbapenem-resistant. Of the hvKp isolates from community-acquired infection, 0/7 (0%) were MDR and 0/7 (0%) were carbapenem-resistant. Additionally, unique characteristics of nosocomial, healthcare-associated, and community-acquired hvKp infection were identified. In summary, 50% of K. pneumoniae infections were caused by hvKp. A concerning, novel finding from this report is a major shift in hvKp epidemiology. Ninety-one percent of hvKp infections were nosocomial or healthcare-associated, and 43.1% of these isolates were MDR.
Conclusions
These data suggest that hvKp may be replacing classical K. pneumoniae as the dominant nosocomial and healthcare-associated pathotype. Ongoing surveillance is needed to determine if this trend is occurring elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.