Aims The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. Methods and results Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. Conclusion Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.
Abstract-Insulin-like growth factor binding protein (IGFBP)-5 is a conserved protein synthesized and secreted by vascular smooth muscle cells (VSMCs). IGFBP-5 binds to extracellular IGFs and modulates IGF actions in regulating VSMC proliferation, migration, and survival. IGFBP-5 also stimulates VSMC migration through an IGF-independent mechanism, but the molecular basis underlying this ligand-independent action is unknown. In this study, we show that endogenous IGFBP-5 or transiently expressed IGFBP-5-EGFP, but not IGFBP-4-EGFP, is localized in the nuclei of VSMCs. Using a series of IGFBP-4/5 chimeras and IGFBP-5 points mutants, we demonstrated that the IGFBP-5 C-domain is necessary and sufficient for its nuclear localization, and residues K206, K208, K217, and K218 are particularly critical. Intriguingly, inhibition of protein secretion abolishes IGFBP-5 nuclear localization, suggesting the nuclear IGFBP-5 is derived from the secreted protein. When added exogenously, 125 I-or Cy3-labeled IGFBP-5 is capable of cellular entry and nuclear translocation. To identify potential transcriptional factor(s) that interact with IGFBP-5, a human aorta cDNA library was screened by a yeast two-hybrid screening strategy. Although this screen identified many extracellular and cytosolic proteins that are known to interact with IGFBP-5, no known transcription factors were found. Further motif analysis revealed that the IGFBP-5 N-domain contains a putative transactivation domain. When fused to GAL-4 DNA dinging domain and tested, the IGFBP-5 N-domain has strong transactivation activity. Mutation of the IGF binding domain or treatment of cells with IGF-I has little effect on transactivation activity. These results suggest that IGFBP-5 is localized in VSMC nucleus and possesses transcription-regulatory activity that is IGF independent. The full text of this article is available online at http://circres.ahajournals.org.
Background: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. Methods: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. Results: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-β-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-β-cyclodextrin inhibits AAA in a VSMC TFEB–dependent manner in mouse models. Conclusions: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-β-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.