Objective: To compare the accuracies of quantitative computed tomography (CT) parameters and semiquantitative visual score in evaluating clinical classification of severity of coronavirus disease (COVID-19). Materials and Methods: We retrospectively enrolled 187 patients with COVID-19 treated at Tongji Hospital of Tongji Medical College from February 15, 2020, to February 29, 2020. Demographic data, imaging characteristics, and clinical data were collected, and based on the clinical classification of severity, patients were divided into groups 1 (mild) and 2 (severe/ critical). A semiquantitative visual score was used to estimate the lesion extent. A three-dimensional slicer was used to precisely quantify the volume and CT value of the lung and lesions. Correlation coefficients of the quantitative CT parameters, semiquantitative visual score, and clinical classification were calculated using Spearman's correlation. A receiver operating characteristic curve was used to compare the accuracies of quantitative and semi-quantitative methods. Results: There were 59 patients in group 1 and 128 patients in group 2. The mean age and sex distribution of the two groups were not significantly different. The lesions were primarily located in the subpleural area. Compared to group 1, group 2 had larger values for all volume-dependent parameters (p < 0.001). The percentage of lesions had the strongest correlation with disease severity with a correlation coefficient of 0.495. In comparison, the correlation coefficient of semiquantitative score was 0.349. To classify the severity of COVID-19, area under the curve of the percentage of lesions was the highest (0.807; 95% confidence interval, 0.744-0.861: p < 0.001) and that of the quantitative CT parameters was significantly higher than that of the semiquantitative visual score (p = 0.001). Conclusion: The classification accuracy of quantitative CT parameters was significantly superior to that of semiquantitative visual score in terms of evaluating the severity of COVID-19.
The aim of this study was to investigate canine astrovirus (CaAstV) infection in southwest China. We collected 107 faecal samples from domestic dogs with obvious diarrhoea. Forty-two diarrhoeic samples (39.3 %) were positive for CaAstV by RT-PCR, and 41/42 samples showed co-infection with canine coronavirus (CCoV), canine parvovirus-2 (CPV-2) and canine distemper virus (CDV). Phylogenetic analysis based on 26 CaAstV partial ORF1a and ORF1b sequences revealed that most CaAstV strains showed unique evolutionary features. Interestingly, putative recombination events were observed among four of the five complete ORF2 sequences cloned in this study, and three of the five complete ORF2 sequences formed a single unique group, suggesting that these strains could be a novel genotype. We successfully sequenced the complete genome of one CaAstV strain (designated 2017/44/CHN), which was 6628 nt in length. The features of this genome include putative recombination events in the ORF1a, ORF1b and ORF2 genes, while the ORF2 gene had a continuous insertion of 7 aa in region II compared with the other complete ORF2 sequences available in GenBank. Phylogenetic analysis showed that 2017/44/CHN formed a single group based on genome sequences, suggesting that this strain might be a novel genotype. The results of this study revealed that CaAstV circulates widely in diarrhoeic dogs in southwest China and exhibits unique evolutionary events. To the best of our knowledge, this is the first report of recombination events in CaAstV, and it contributes to further understanding of the genetic evolution of CaAstV.
To investigate canine kobuvirus (CaKoV) infection in southwest China, 107 fecal samples were collected from dogs with obvious diarrhea in Sichuan and Chongqing regions, China. CaKoV infection was detected in 54 diarrheic samples (50.46%) by RT-PCR targeting a partial fragment (504 bp) of the 3D gene. Comparison of these partial 3D gene sequences from 14 of these CaKoV-positive samples show 95.4%-99.0% nucleotide (nt) identity within this group, and nt identities ranging from 93.1% to 98.2% with previously reported CaKoV 3D gene sequences. Additionally, we amplified five VP1 gene sequences and analyzed the inferred phylogeny. Amino acid (aa) identities of the five VP1 gene sequences were 81.5%-89.4% with those previously reported. Furthermore, one complete CaKoV genome was successfully obtained from a positive sample and designated SMCD-59/CHN/2015. This genome consisted of 8,184 nt, and shared 92.9%-96.6% nt identity (97.6%-98.1% aa identity) with other reported CaKoV genomes. This study provides proof that CaKoV circulates in diarrheic dogs in southwest China, and that these viruses exhibit unique genetic characteristics.
The rate of lung cancer in tuberculosis (TB) patients is 7 to 30% higher than that in healthy individuals. Conventional chemotherapy of lung cancer shows limited efficiency due to poor tumor tissue drug accumulation and nonspecific cytotoxicity. Epidermal growth factor receptor (EGFR) is a promising target, which is overexpressed in lung carcinomas. In the present study, EGFR-targeted nanoparticles were constructed and co-delivered cisplatin (CDDP) and doxorubicin (DOX) for lung cancer therapy. In the present research, EGF-PEG-DSPE was synthesized. Then, EGFR-targeted lipid polymeric nanoparticles (LPNs) were fabricated, which consisted of a CDDP-loaded hybrophobic polymeric core, a DOX-loaded phospholipid layer, and an outer layer of EGF-PEG-DSPE ligand. The particle size, ζ potential, stability, release behavior of LPNs were characterized. The antitumor ability of LPNs were assessed in vitro and in vivo. EGFR-targeted LPNs loaded with CDDP and DOX (EGF C/D LPNs) had a size of 141.6 nm, and could encapsulate over 80% of feed drugs. Dual drug-loaded LPNs showed synergistic effects with a combination index (CI) of 0.57. EGF C/D LPNs showed the smallest tumor volume (253 mm 3), with a tumor inhibition ratio of 74.5%. In summary, EGF C/D LPNs were stable and released the drugs in a sustained manner. In vitro and in vivo studies revealed that EGF C/D LPNs exhibited improved anticancer activity along with lower toxicity. These results indicated the best efficiency of EGF C/D LPNs for lung carcinoma therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.