(PZT) is one of the most important and widely used piezoelectric materials. The study of its local and average structures is of fundamental importance in understanding the origin of its high-performance piezoelectricity. Pair distribution function analysis and Rietveld refinement have been carried out to study both the short-and long-range order in the Zr-rich rhombohedral region of the PZT phase diagram. The nature of the monoclinic phase across the Zr-rich and morphotropic phase boundary area of PZT is clarified. Evidence is found that long-range average rhombohedral and both long-and short-range monoclinic regions coexist at all compositions. In addition, a boundary between a monoclinic (M A ) structure and another monoclinic (M B ) structure has been found. The general advantage of a particular monoclinic distortion (M A ) for high piezoactivity is discussed from a spatial structural model of susceptibility to stress and electric field, which is applicable across the wide field of perovskite materials science.
Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO3 solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V−1 along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.
Lead zirconate titanate (PZT) is one of the most widely studied piezoelectric materials, mainly because of its 'mysterious' relationship between the so-called morphotropic phase boundary (MPB) and its strong piezoelectric coupling factor. Using results from a pair distribution function analysis, this paper examines how the complex local structure in PZT affects the long-range average structure across the MPB. A monoclinic M C type structure is discovered in PZT. A first-order transformation between the monoclinic M A and M C components in both the average and local structures explains the sudden change in piezoelectric effect around these compositions. The role of polarization rotation in the enhancement of the piezoelectric properties is discussed with respect to the composition of PZT. The structure-property relationship that is revealed by this study explains the unique properties of PZT, and may be applicable in the design of new MPB-type functional materials.
While doping is widely used for tuning physical properties of perovskites in experiments, it remains a challenge to exactly know how doping achieves the desired effects. Here, we propose an empirical and computationally tractable model to understand the effects of doping with Fe-doped BaTiO 3 as an example. This model assumes that the lattice sites occupied by Fe ion and its nearest six neighbors lose their ability to polarize, giving rise to a small cluster of defective dipoles. Employing this model in Monte-Carlo simulations, many important features like reduced polarization and the convergence of phase transition temperatures, which have been observed experimentally in acceptor doped systems, are successfully obtained. Based on microscopic information of dipole configurations, we provide insights into the driving forces behind doping effects and propose that active dipoles, which exist in proximity to the defective dipoles, can account for experimentally observed phenomena. Close attention to these dipoles are necessary to understand and predict doping effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.