The physicochemical properties of noble metal nanocrystals depend strongly on their size and shape, and it is becoming clear that the design and facile synthesis of particular nanostructures with tailored shape and size is especially important. Herein a novel class of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies and optical properties are prepared for the first time by a facile, one-pot, seedless synthesis using ascorbic acid (AA) to reduce hydrogen tetrachloroaurate (HAuCl4) in the presence of (1-hexadecyl)trimethylammonium chloride (CTAC). The morphologies of the synthesized gold nanoflowers are controlled and fine-tuned by varying the synthetic conditions such as the concentration of reagents and the growth temperature. Due to their unique hierarchical three-dimensional (3D) structures with rich hot spots, these gold nanoflowers exhibit an efficient performance in single-particle surface-enhanced Raman scattering (SERS). The work stands out as an interesting approach for anisotropic particle synthesis and morphological control, and the proposed novel, hierarchical gold nanoflowers have a number of exciting potential applications in SERS-based sensors.
Metastasis accounts for 90% of cancer-related deaths and, currently, there are no effective clinical therapies to block the metastatic cascade. A need to develop novel therapies specifically targeting fundamental metastasis processes remains urgent. Here, we demonstrate that Salmonella YB1, an engineered oxygen-sensitive strain, potently inhibits metastasis of a broad range of cancers. This process requires both IFN-γ and NK cells, as the absence of IFN-γ greatly reduces, whilst depletion of NK cells in vivo completely abolishes, the anti-metastatic ability of Salmonella. Mechanistically, we find that IFN-γ is mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promotes the accumulation, activation, and cytotoxicity of NK cells, which kill the metastatic cancer cells thus achieving an anti-metastatic effect. Our findings highlight the significance of a self-regulatory feedback loop of NK cells in inhibiting metastasis, pointing a possible approach to develop anti-metastatic therapies by harnessing the power of NK cells.
Most contemporary X‐ray detectors adopt device structures with non/low‐gain energy conversion, such that a fairly thick X‐ray photoconductor or scintillator is required to generate sufficient X‐ray‐induced charges, and thus numerous merits for thin devices, such as mechanical flexibility and high spatial resolution, have to be compromised. This dilemma is overcome by adopting a new high‐gain device concept of a heterojunction X‐ray phototransistor. In contrast to conventional detectors, X‐ray phototransistors allow both electrical gating and photodoping for effective carrier‐density modulation, leading to high photoconductive gain and low noise. As a result, ultrahigh sensitivities of over 105 μC Gyair−1 cm−2 with low detection limit are achieved by just using an ≈50 nm thin photoconductor. The employment of ultrathin photoconductors also endows the detectors with superior flexibility and high imaging resolution. This concept offers great promise in realizing well‐balanced detection performance, mechanical flexibility, integration, and cost for next‐generation X‐ray detectors.
The Metal-free nitrogen-doped carbons represent an emerging low-cost nonprecious electrocatalyst for oxygen reduction reaction (ORR) that is a sluggish process at the cathode of polymer electrolyte membrane fuel cells (PEMFCs) and a verity of metal-air batteries. During the past few years, the ORR catalytic activity of nitrogen-doped carbons has been significantly increased, making them highly competitive alternatives to conventional precious metals based electrocatalysts for ORR. However, controversies remain in the unambiguous identification of the ORR active sites on nitrogen-doped carbons. This review summarizes the recent progress in probing the potential active sites on metal-free nitrogen-doped carbons for ORR, aiming to gain in-depth understanding of the ORR catalytic mechanism on nitrogen-doped carbons for further enhancing ORR activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.