As a new mode of transportation, the underground logistics system (ULS) has become one of the solutions to the problems of environmental pollution and traffic congestion. Considering the environmental and economic factors in urban logistics, this paper conducts comprehensive design and optimization research on the network nodes and passages of urban underground logistics and proposes a relatively complete framework for a sustainable underground logistics network. A hybrid method is proposed, which includes the set cover model used to perform the first location of urban underground logistics nodes, the fuzzy clustering method applied to classify the located logistics nodes into the first-level and second-level nodes considering the congestion in different urban areas of the city and a mixed integer programming model proposed to optimize and design the underground logistics passage to find optimal passage parameters at every underground logistics node. Based on the above hybrid method, a sustainable underground logistics network framework including all-levels logistics nodes and passages is formed, with a subdistrict of Nanjing as a case study. The discussion of results shows that this underground logistics network framework proposal is very effective in reducing logistics time cost, exhaust emission and congestion cost. It provides support for decisions in the design and development of urban sustainable underground logistics networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.