The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery.
Abstract. Land conversion occurred in the lake catchment area caused the decreasing of water quality in many lakes of Indonesia. According to Lake Ecosystem Management Guidelines from Ministry of Environment, tropic state of lake water is one of parameters for assessing the lake ecosystem status.Tropic state can be indicated by the quantity of nitrogen, phosphorus, chlorophyll, and water clarity.The objective of this research is to develop the water quality algorithm and map the water clarity of lake water using Landsat 8 data. The data were standardized for sun geometry correction and atmospheric correction using Dark Object Subtraction method. In the first step, Total Suspended Solid (TSS) distributions in the lake were calculated using a semi empirical algorithm (Doxaran et al., 2002), which can be applied to a wide range of TSS values. Secchi Disk Transparency (SDT) distributions were calculated using our water clarity algorithm that was obtained from the relationship between TSS and SDT measured directly in the lake waters. The result shows that the water clarity algorithm developed in this research has the determination coefficient that reaches to 0,834. Implementation of the algorithm for Landsat 8 data in 2013 and 2014 showed that the water clarity in Kerinci Lake waters was around 2 m or less, but the water clarity in Tondano Lake waters was around 2 -3 m. It means that Kerinci Lake waters had lower water clarity than Tondano Lake waters which is consistent with the field measurement results.
Analisis data penginderaan jauh dengan menggunakandata satelit SPOT 6dapat digunakan untuk melihat dinamika fluktuasi besarnya Total Suspended Matter (TSM). Dalam penelitian ini telah dilakukan pengembangan model ekstraksi TSM dengan studi kasus di muara sungaiCitanduy yang merupakan salah satu penyebab proses pendangkalan dikawasan perairan Segara Anakan.Tujuan penelitian ini adalah pengembangan model TSM yang diekstraksi dari data satelit SPOT 6. Metode penelitian adalahmenggunakan pendekatan algoritma dari persamaan fungsi ekponensial satu kanal band merah dari data satelit SPOT 6,dimana nilai reflektansi data band merah yang sudah terkoreksi atmosfer. Hasil analisis menunjukkan bahwa kanal merah sensitif terhadap nilai konsentrasi TSM, terbukti dapat memberikan identifikasi nilai konsentrasi TSM yang baik. Berdasarkan hasil test area sebanyak 28 titik pengamatan dapat menunjukkan nilai koefesien determinasi R2= 0,903 % ini menunjukkan suatu hasil yangsignifikan.
Abstract. Most lakes in Indonesia have suffered (decrease in quality) caused by land conversion in the catchment area, soil erosion, and water pollution from agriculture and households. This study utilizes remote sensing data to monitor several parameters used as ecosystem status assessors in accordance with the guidelines of Lake Ecosystem Management provided by the Ministry of Environment. The monitoring was done at Lake Rawa Pening using Landsat TM/ETM+ satellite data over the period of 2000-2013. The data standardization was done for sun angle correction and also atmospheric correction by removing dark pixels using histogram adjustment method. RGB color composites (R: NIR + SWIR, G: NIR, B: NIR-RED) were used for water hyacinth identification; thus, the lake water surface area can be delineated. Further samples were collected for water hyacinth and water classification with Maximum Likelihood method. Total Suspended Matter (TSM) by Doxaran model and the water clarity from field measurement was correlated to build water clarity algorithm. The results show that Lake Rawa Pening was deterioting in term of quality during the period of 2000-2013; it can be seen from the dynamic rate of the shrinkage and the expansion of the lake water surface area, the uncontrolled distribution of water hyacinth which it covered 45% of the lake water surface area in 2013, the increased of TSM concentration, and the decreased of water clarity. Most parts of Rawa Pening's water have clarity less than 2.5 m which indicated that the thropic status is hypertrophic class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.