A rice chitinase cDNA (RCC2) driven by the CaMV 35S promoter was introduced into cucumber (Cucumis sativus L.) through Agrobacterium mediation. More than 200 putative transgenic shoots were regenerated and grown on MS medium supplemented with 100 mg/l kanamycin. Sixty elongated shoots were examined for the presence of the integrated RCC2 gene and subsequently confirmed to have it. Of these, 20 were tested for resistance against gray mold (Botrytis cinerea) by infection with the conidia: 15 strains out of the 20 independent shoots exhibited a higher resistance than the control (non-transgenic plants). Three transgenic cucumber strains (designated CR29, CR32 and CR33) showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains. Chitinase gene expression in highly resistant transgenic strains (CR32 and CR33) was compared to that of a susceptible transgenic strain (CR20) and a control. Different responses for disease resistance were observed among the highly resistant strains. CR33 inhibited appressoria formation and penetration of hyphae. Although CR32 permitted penetration of hyphae, invasion of the infection hyphae was restricted. Furthermore, progenies of CR32 showed a segregation ratio of 3:1 (resistant:susceptible). As the disease resistance against gray mold was confirmed to be inheritable, these highly resistant transgenic cucumber strains would serve as good breeding materials for disease resistance.
Previously, we developed a particle bombardment-mediated transformation protocol in Phyllostachys nigra bamboo by expressing hygromycin phosphotransferase gene (HPT) and neomycin phosphotransferase II gene (NPT II). Although these marker genes could introduce to several tissue cultured organs (e.g. leaves, buds, and calli) of Phyllostachs bamboo species, some organs showed a high susceptibility and/or a low selectivity to hygromycin and kanamycin. In this report, therefore, we describe advantages and technical details for generating stable transgenic bamboo cells using the particle bombardment method with the mutated-acetolactate synthase gene (mALS) from rice (W548L/S627IOsALS) as a non-antibiotic selection marker. A facile and efficient transformation was achieved with the mALS gene and enhanced fluorescent protein gene (mCherry). Approximately 490 and 1400 mCherry-expressing cells/dish/shot in average were observed in both P. bambusoides and P. nigra under fluorescent stereo-microscope. Stable transgenic bamboo cell lines were generated in a selection medium supplemented with 0.1 渭M of bispyribac-sodium (BS) as ALS inhibitor. The integration of mALS gene was identified by in vivo ALS enzyme assay and a PCR-restriction fragment length polymerphism (RFLP) based detection procedures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.