Mycoviruses causing impaired growth and abnormal pigmentation of the host were found in the rice blast fungus, Magnaporthe oryzae. Four dsRNAs, dsRNA 1 (3554 bp), dsRNA 2 (3250 bp), dsRNA 3 (3074 bp) and dsRNA 4 (3043 bp), were detected in isolate S-0412-II 1a of M. oryzae. By picking up single conidia of S-0412-II 1a, cured strains of the fungus were isolated that had completely lost the mycovirus. The cured strains had normal mycelial growth and pigmentation, suggesting that this mycovirus modulates host traits. The buoyant densities of isometric virus particles (~35 nm diameter) containing these dsRNAs in CsCl ranged from 1.37 to 1.40 g cm "3 . The single ORF (3384 nt) of dsRNA 1 encoded a gene product highly homologous to the viral RNA-dependent RNA polymerase of members of the family Chrysoviridae. It is noteworthy that mycovirus S-0412-II 1a was detected not only in host cells but also in culture supernatant. Furthermore, abnormal aggregation of mycelia was observed after adding the mycoviruscontaining culture supernatant to an uninfected strain of M. oryzae and mycoviral dsRNAs were detectable from the aggregated mycelia. This novel dsRNA mycovirus was named Magnaporthe oryzae chrysovirus 1.
Two high-molecular-mass dsRNAs of approximately 14 and 15 kbp were isolated from the common bean (Phaseolus vulgaris) cultivar Black Turtle Soup. These dsRNAs did not appear to cause obvious disease symptoms, and were transmitted through seeds at nearly 100 % efficiency. Sequence information indicates that they are the genomes of distinct endornavirus species, for which the names Phaseolus vulgaris endornavirus 1 (PvEV-1) and Phaseolus vulgaris endornavirus 2 (PvEV-2) are proposed. The PvEV-1 genome consists of 13 908 bp and potentially encodes a single polyprotein of 4496 aa, while that of PvEV-2 consists of 14 820 bp and potentially encodes a single ORF of 4851 aa. PvEV-1 is more similar to Oryza sativa endornavirus, while PvEV-2 is more similar to bell pepper endornavirus. Both viruses have a sitespecific nick near the 59 region of the coding strand, which is a common property of the endornaviruses. Their polyproteins contain domains of RNA helicase, UDP-glycosyltransferase and RNA-dependent RNA polymerase, which are conserved in other endornaviruses. However, a viral methyltransferase domain was found in the N-terminal region of PvEV-2, but was absent in PvEV-1. Results of cell-fractionation studies suggested that their subcellular localizations were different. Most endornavirus-infected bean cultivars tested were co-infected with both viruses.
The International Committee on Taxonomy of Viruses (ICTV) recently accepted Endornavirus as a new genus of plant dsRNA virus. We have determined the partial nucleotide sequences of the RNA-dependent RNA polymerase regions from the large dsRNAs (about 14 kbp) isolated from barley (Hordeum vulgare), kidney bean (Phaseolus vulgaris), melon (Cucumis melo), bottle gourd (Lagenaria siceraria), Malabar spinach (Basella alba), seagrass (Zostera marina), and the fungus Helicobasidium mompa. Phylogenetic analyses of these seven dsRNAs indicate that these dsRNAs are new members of the genus Endornavirus that are widely distributed over the plant and fungal kingdoms.
In the right half of the Munsell color space from 2.5R to 7.5BG, 90 colors were selected, most of which were at the lightness level V = 7, and in the left half from 2.5BG to 7.5R, 88 colors were selected most of which were at the level V = 4. Of these 178 colors, 176 pairs in the right half and 185 pairs in the left half were subjected to the following color‐difference judgment. Subjects, five in number, selected two grays for which the lightness difference matches a given color difference in size. Two matrices (incomplete) of color differences given in terms of V were processed by MDSCAL, and finally one configuration of 178 points was synthesized in a three‐dimensional Euclidean space. Implications of the results are discussed in connection with results of previous similar studies which were based upon much smaller numbers of colors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.