BackgroundIt has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects.ResultsFecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward’s linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0–35), 33 (24–45), 42 (32–62), 77 (36–84) and 94 (86–98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster.ConclusionOur results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0708-5) contains supplementary material, which is available to authorized users.
Bifidobacteria are known to produce folate, a vital nutrient for humans. Previous studies have suggested that the ability to produce folate is strain dependent, but further adequate evaluation is needed. In this study, a total of 44 strains, including 12 species and 7 subspecies, of bifidobacteria were investigated for the production of folate during cultivation in medium containing essential levels of folate for growth of the tested strains. An in vitro assay showed that all strains of human-residential bifidobacteria (HRB) were able to produce folate, whereas most strains of non-HRB were not, with the exception of the B. thermophilum and B. longum ssp. suis strains. The differences in the in vivo production of folate by HRB and non-HRB were confirmed using mono-associated mice. The fecal folate concentrations, blood levels of hemoglobin and mean corpuscular volumes were significantly higher in the mice colonized with a folate producer, B. longum subsp. longum, compared with mice colonized with a nonproducer, B. animalis subsp. lactis. Our results confirmed the differences in folate production between HRB and non-HRB strains and suggested the benefit of HRB to hosts from the perspective of potential folate delivery.
Strains of Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium animalis are widely used as probiotics in the food industry. Although numerous studies have revealed the properties and functionality of these strains, it is uncertain whether these characteristics are species common or strain specific. To address this issue, we performed a comparative genomic analysis of 49 strains belonging to these three bifidobacterial species to describe their genetic diversity and to evaluate species-level differences. There were 166 common clusters between strains of B. breve and B. longum, whereas there were nine common clusters between strains of B. animalis and B. longum and four common clusters between strains of B. animalis and B. breve. Further analysis focused on carbohydrate metabolism revealed the existence of certain strain-dependent genes, such as those encoding enzymes for host glycan utilisation or certain membrane transporters, and many genes commonly distributed at the species level, as was previously reported in studies with limited strains. As B. longum and B. breve are human-residential bifidobacteria (HRB), whereas B. animalis is a non-HRB species, several of the differences in these species' gene distributions might be the result of their adaptations to the nutrient environment. This information may aid both in selecting probiotic candidates and in understanding their potential function as probiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.