The purpose of this study is to determine factors that are related to employee satisfaction with telecommuting. Recent research supports the notion of a curvilinear relation between extent of telecommuting and job satisfaction. Drawing on control theory, we find that performance outcome orientation (degree to which objective criteria are used in employee evaluation) moderates the curvilinear relation between extent of telecommuting and job satisfaction. We also find support for a curvilinear (inverted U) relation between extent of telecommuting and life satisfaction, with worker type (defined by work drive and work enjoyment) moderating that relation.
A new adaptive strategy was developed for the ex vivo assembly of a functional tetravalent designer cellulosome on the yeast cell surface. The design is based on the use of (1) a surface-bound anchoring scaffoldin composed of two divergent cohesin domains, (2) two dockerin-tagged adaptor scaffoldins to amplify the number of enzyme loading sites based on the specific dockerin−cohesin interaction with the anchoring scaffoldin, and (3) two dockerin-tagged enzymatic subunits (the endoglucanse Gt and the β-glucosidase Bglf) for cellulose hydrolysis. Cells displaying the tetravalent cellulosome on the surface exhibited a 4.2-fold enhancement in the hydrolysis of phosphoric acid swollen cellulose (PASC) compared with free enzymes. More importantly, cells displaying the tetravalent celluosome also exhibited an ∼2-fold increase in ethanol production compared with cells displaying a divalent cellulosome using a similar enzyme loading. These results clearly indicate the more crucial role of enzyme proximity than just simply increasing the enzyme loading on the overall cellulosomal synergy. To the best of our knowledge, this is the first report that exploits the natural adaptive assembly strategy in creating artificial cellulosome structures. The unique feature of the anchoring and the adaptor scaffoldin strategy to amplify the number of enzymatic subunits can be easily extended to more complex cellulosomal structures to achieve an even higher level of enzyme synergy.
BackgroundThe recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC).ResultsA yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome.ConclusionsThis report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast consortium secreting only the three cellulases. The use of more complex cellulosomal structures may further improve the overall efficiency for ethanol production.
Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (g-Glu-Cys) n moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and g-glutamyl cysteine (g-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3D strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n ¼ 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn 2þ enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.