Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a–c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs.
The novel formula of spiramycin/propolis loaded chitosan (CS)/alginate (Alg) nanoparticles (NPs) was assessed for Toxoplasma gondii (T. gondii) treatment in comparison with the commercially available spiramycin regarding tissue penetration and blood brain barrier (BBB) passage. Swiss Albino mice were inoculated intraperitoneally by 2500 tachyzoites of the virulent T. gondii RH strain. The experimental groups were treated with oral spiramycin, propolis, CS/Alg NPs, spiramycin loaded CS/Alg NPs, propolis loaded CS/Alg NPs, and spiramycin/propolis loaded CS/Alg NPs. The results demonstrated that spiramycin/propolis loaded CS/Alg NPs exerted the longest survival time with no mortality on the sacrifice day (8th) in addition to representing the highest significant parasite percent reduction of (≥96% reduction) in liver, spleen and brain designating successful tissue penetration and BBB passage. Tachyzoites treated with spiramycin/propolis loaded CS/Alg NPs demonstrated the most disfigured rapturing organism via scanning electron microscope examination along with representing an overall remarkable improvement of the histopathological pictures of liver, spleen and brain. In conclusion, spiramycin/propolis loaded CS/Alg NPs showed the uppermost efficacy in the treatment of acute murine toxoplasmosis. The safe nature and the anti-parasitic effect of each of CS, Alg, spiramycin and propolis encourage the synergistic use of spiramycin/propolis loaded CS/Alg NPs as a potent treatment for human toxoplasmosis.
The present study investigated the anti-Toxoplasma effect of chitosan nanoparticles [CS NPs], spiramycin, spiramycin co-administered with metronidazole and spiramycin-CS NPs formulation on the parasite burden and histopathological changes in the liver, spleen and brain in experimentally infected mice. Seventy male Swiss albino mice were classi ed into seven equal groups: healthy control (I), infected untreated control (II), infected group receiving CS NPs (III), spiramycin administered infected group (IV), infected group receiving spiramycin-metronidazole (V), infected receiving 400 mg/kg spiramycin-CS NPs (VI) and infected treated with spiramycin-loaded CS NPs 100 mg/kg (VII). All groups were inoculated intraperitoneally with 2500 T. gondii tachyzoites RH strain except the healthy control group. All groups were sacri ced on the 8th day after infection. Density of the parasite and histopathological examination of the liver, spleen and brain of all treated mice revealed reduction in the mean tachyzoites count as well as decreased in ammation, congestion and necrosis within tissue sections. Spiramycin-loaded NPs displayed the highest signi cant reduction in the pathological insult tailed by spiramycin-metronidazole and CS NPs. In conclusion, spiramycin-loaded CS NPs showed a promising synergistic combination in the treatment of the histopathology caused by toxoplasmosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.