Survivin, a family member of the inhibitor of apoptosis proteins that is expressed during mitosis in a cell cycle-dependent manner and localized to different components of the mitotic apparatus, plays an important role in both cell division and inhibition of apoptosis. Survivin is expressed in a vast majority of human cancers, but not in normal adult tissues. Survivin expression is often correlated with poor prognosis in a wide variety of cancer patients. These features make survivin an attractive target against which cancer therapeutics could be developed. We have identified a survivin antisense oligonucleotide (ASO) that potently downregulated survivin expression in human cancer cells derived from lung, colon, pancreas, liver, breast, prostate, ovary, cervix, skin, and brain as measured by quantitative RT-PCR and immunoblotting analysis. Specific inhibition of survivin expression in multiple cancer cell lines by this ASO (LY2181308) induced caspase-3-dependent apoptosis, cell cycle arrest in the G 2 -M phase, and multinucleated cells. We also showed that inhibition of survivin expression by LY2181308 sensitized tumor cells to chemotherapeutic-induced apoptosis. Most importantly, in an in vivo human xenograft tumor model, LY2181308 produced significant antitumor activity as compared with saline or its sequence-specific control oligonucleotide and sensitized to gemcitabine, paclitaxel, and docetaxel. Furthermore, we showed that this antitumor activity was associated with significant inhibition of survivin expression in these xenograft tumors. On the basis of these, LY2181308 is being evaluated in a clinical setting (Phase II) in combination with docetaxel for the treatment of prostate cancer.
Increasing concentrations of sodium octanoate were progressively inhibitory to the activities of glucokinase, hexokinase, phosphofructokinase, and pyruvate kinase. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases were also markedly inhibited. Other enzymes of carbohydrate metabolism such as lactate dehydrogenase, phosphohexose isomerase, and fructose-1,6-diphosphatase were not decreased. Among the key glycolytic enzymes, the inhibition of pyruvate kinase by the fatty acid was most marked. The biological significance of the inhibition of the key glycolytic enzymes is interpreted as a feedback inhibitory mechanism in regulation of fatty acid biosynthesis. The mechanism may function for rapid adaptation by which the organism can use the fatty acid level as a metabolic directional switch in decreasing glycolysis and turning on gluconeogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.