In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 scientists from academia, government, and the agro-biotech industry. The objectives of the meeting were to explore current knowledge and identify areas requiring further study on unintended effects in plants and to discuss how this information can inform and improve genetically modified (GM) crop risk assessments. The meeting featured presentations on the molecular basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops. The development and role of emerging “omics” technologies in the assessment of unintended effects was also discussed. Several themes recurred in a number of talks; for example, a common observation was that no system for genetic modification, including conventional methods of plant breeding, is without unintended effects. Another common observation was that “unintended” does not necessarily mean “harmful”. This paper summarizes key points from the information presented at the meeting to provide readers with current viewpoints on these topics.Electronic supplementary materialThe online version of this article (doi:10.1007/s11248-015-9867-7) contains supplementary material, which is available to authorized users.
Although rarely occurring in humans, hemangiosarcomas (HS) have become important in evaluating the potential human risk of several chemicals, including industrial, agricultural, and pharmaceutical agents. Spontaneous HS arise frequently in mice, less commonly in rats, and frequently in numerous breeds of dogs. This review explores knowledge gaps and uncertainties related to the mode of action (MOA) for the induction of HS in rodents, and evaluates the potential relevance for human risk. For genotoxic chemicals (vinyl chloride and thorotrast), significant information is available concerning the MOA. In contrast, numerous chemicals produce HS in rodents by nongenotoxic, proliferative mechanisms. An overall framework is presented, including direct and indirect actions on endothelial cells, paracrine effects in local tissues, activation of bone marrow endothelial precursor cells, and tissue hypoxia. Numerous obstacles are identified in investigations into the MOA for mouse HS and the relevance of the mouse tumors to humans, including lack of identifiable precursor lesions, usually late occurrence of the tumors, and complexities of endothelial biology. This review proposes a working MOA for HS induced by nongenotoxic compounds that can guide future research in this area. Importantly, a common MOA appears to exist for the nongenotoxic induction of HS, where there appears to be a convergence of multiple initiating events (e.g., hemolysis, decreased respiration, adipocyte growth) leading to either dysregulated angiogenesis and/or erythropoiesis that results from hypoxia and macrophage activation. These later events lead to the release of angiogenic growth factors and cytokines that stimulate endothelial cell proliferation, which, if sustained, provide the milieu that can lead to HS formation.
The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes in detail the process for using the roadmap and matrix. The purpose of this methodology is to optimize the use of prior information and testing resources (animals, time, facilities, and personnel) to efficiently and transparently reach a risk and/or safety determination. Based on the particular problem, exposure and toxicity data should have sufficient precision to make such a decision. Estimates of exposure and toxicity, bounded by variability and/or uncertainty, are plotted on the X-and Y-axes of the RISK21 matrix, respectively. The resulting intersection is a highly visual representation of estimated risk. Decisions can then be made to increase precision in the exposure or toxicity estimates or declare that the available information is sufficient. RISK21 represents a step forward in the goal to introduce new methodologies into 21st century risk assessment. Indeed, because of its transparent and visual process, RISK21 has the potential to widen the scope of risk communication beyond those with technical expertise.
The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.