Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-cα by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-cα, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial-nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype.
Coxsackievirus B3 (CVB3) is a globally prevalent enterovirus of the Picornaviridae family that is frequently associated with viral myocarditis (VM). Neutrophils, as first responders, may be key cells in determining viral disease outcomes; however, neutrophils have been poorly studied with respect to viral infection. Although neutrophils have been ascribed a relevant role in early cardiac inflammation, their precise role in CVB3 infection has not yet been evaluated. In this study, we aimed to determine if the interaction between human neutrophils and CVB3 could lead to viral replication and/or modulation of neutrophil survival and biological functions, and whether neutrophil depletion in a murine model has a beneficial or harmful effect on CVB3 infection. Our results show that CVB3 interacted with but did not replicate in human neutrophils. Neutrophils recognized CVB3 mainly through endosomal TLR-8, and infection triggered NFκB activation. Virus internalization resulted in increased cell survival, up-regulation of CD11b, enhanced adhesion to fibrinogen and fibronectin, and the secretion of IL-6, IL-1β, TNF-α, and IL-8. Supernatants from infected neutrophils exerted chemotactic activity partly mediated by IL-8. The infected neutrophils released myeloperoxidase and triggered neutrophil extracellular trap formation in the presence of TNF-α. In mice infected with CVB3, viral RNA was detected in neutrophils as well as in mononuclear cells. After neutrophil depletion, mice showed reduced VM reflected by a reduction in viral titers, cell exudates, and CCL-2 mRNA levels, as well as the abrogation of reactive cardiomyocyte hypertrophy. Our results indicate that neutrophils have relevant direct and indirect roles in the pathogenesis of CVB3-induced VM.
Previous studies have suggested that macrophages may contribute to acute Leptospira dissemination, as well as having a major role in kidney fibrosis. Our aim was to characterize the role of macrophages and galectin 3 (Gal-3) on the survival, clinical course, bacterial burden, interstitial nephritis, and chronic kidney fibrosis in Leptospira interrogans serovar Copenhageni (LIC)-induced experimental murine leptospirosis. C57BL/6J mice depleted of macrophages by liposome-encapsulated clodronate treatment and infected with LIC presented a higher bacterial burden, had reduced subacute nephritis and enhanced chronic kidney fibrosis relative to untreated, infected mice. Moreover, LIC infection in mice whose Gal-3 was disrupted (Lgals3−/–) had a higher bacterial burden and enhanced subacute nephritis and chronic kidney fibrosis when compared to C57BL/6J wild-type mice. Chronic fibrosis did not correlate with higher transcription levels of TGF-β1 or IL-13 in the kidneys. Kidney fibrosis was found in chronically infected rats as well as in wild infected rats. On the other hand, human fibroblast cultures exhibited enhanced differentiation to myofibroblasts after treatment with LIC. Our results demonstrate that macrophages and Gal-3 play a critical role in controlling the LIC burden but has a minor role in subsequent fibrosis. Instead, kidney fibrosis was better correlated with bacterial burden. Taken together, our results do not support a role for macrophages to disseminate leptospires during acute infection, nor in chronic kidney fibrosis.
How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBPβ dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1α. HP1α inhibits LAP transcriptional capacity and occupies the promoter of the C/EBPβ-dependent gene c/ebpα in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1α binding decreases from c/ebpα promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBPβ associated with chromatin or nucleoskeleton, as well as dynamic changes in their interaction with HP1α, play key roles in the regulation of C/EBP target genes during adipogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.