Serotonin (5-HT) has direct and specific effects on the activity of spinal cord motoneurons. The 5-HT1A receptor has been shown to mediate motoneuron responses in spinal reflex pathways using the highly selective 5-HT1A receptor agonist 8-OH-DPAT. We have developed an antipeptide antibody that recognizes a specific region (the second external loop) of the 5-HT1A receptor. This 5-HT1A receptor antibody labels populations of neurons and glia in the primate cervical spinal cord. The highest receptor density is present in the superficial lamina of the dorsal horn, around the central canal, and on the axon hillock of large ventral horn motoneurons. The cellular labeling pattern on motoneurons shows a single, densely stained, tapering process emanating from the perikaryon. A more diffuse label is also present throughout the soma. Dendritic labeling was not apparent. These results suggest that post-synaptic 5-HT1A receptors may be involved in modulating spinal motoneuron activity at the key site of action potential initiation, the axon hillock.
We have previously demonstrated that leftward asymmetry of the planum temporale (PT), a brain language area, was not unique to humans since a similar condition is present in great apes. Here we report on a related area in great apes, the planum parietale (PP). PP in humans has a rightward asymmetry with no correlation to the LϾR PT, which indicates functional independence. The roles of the PT in human language are well known while PP is implicated in dyslexia and communication disorders. Since posterior bifurcation of the sylvian fissure (SF) is unique to humans and great apes, we used it to determine characteristics of its posterior ascending ramus, an indicator of the PP, in chimpanzee and orangutan brains. Results showed a human-like pattern of RϾL PP (P ϭ 0.04) in chimpanzees with a nonsignificant negative correlation of LϾR PT vs. RϾL PP (CC ϭ Ϫ0.3; P ϭ 0.39). In orangutans, SF anatomy is more variable, although PP was nonsignificantly RϾL in three of four brains (P ϭ 0.17). We have now demonstrated human-like hemispheric asymmetry of a second language-related brain area in great apes. Our findings persuasively support an argument for addition of a new component to the comparative neuroanatomic complex that defines brain language or polymodal communication areas. PP strengthens the evolutionary links that living great apes may offer to better understand the origins of these progressive parts of the brain. Evidence mounts for the stable expression of a neural foundation for language in species that we recently shared a common ancestor with.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.