The platelet integrin ␣ IIb  3 mediates platelet aggregation and platelet adhesion. This integrin is the key to hemostasis and also to pathologic vascular occlusion. A key domain on ␣ IIb  3 is the ligand binding site, which can bind to plasma fibrinogen and to a number of ArgGly-Asp (RGD)-type ligands. However, the nature and function of the ligand binding pocket on ␣ IIb  3 remains controversial. Some studies suggest the presence of two ligand binding pockets, whereas other reports indicate a single binding pocket. Here we use surface plasmon resonance to show that ␣ IIb  3 contains two distinct ligand binding pockets. One site binds to fibrinogen, and a separate site binds to RGD-type ligands. More importantly, however, the two ligand binding pockets are interactive. RGD-type ligands are capable of binding to ␣ IIb  3 even when it is already occupied by fibrinogen. Once bound, RGD-type ligands induce the dissociation of fibrinogen from ␣ IIb  3 . This allosteric cross-talk has important implications for anti-platelet therapy because it suggests a novel approach for the dissolution of existing platelet thrombi.
Peptide mimetics of the RGDF sequence in which Arg-Gly has been replaced with 5-(4-amidinophenyl)pentanoyl mimetic has led to a 1000-fold increase in inhibitory potency over the natural RGDF ligand. The guanidine residue of the arginine may be involved in a reinforced ionic interaction with a carboxylate of the receptor which could explain the dramatic increase in potency upon replacement with benzamidine. This hypothesis is supported by the observation of low inhibitory potency of the corresponding benzylamine (18) and no activity with the corresponding imidazoline derivative (19); plus, ab initio calculations on the respective complexes suggest that the benzamidine-carboxylate is more favorable than the guanidine-carboxylate interaction. The ED50 for the inhibition of ex vivo collagen induced platelet aggregation in the dog for SC-52012 (1) was 0.32 microgram/kg/min by iv infusion with a pharmacodynamic half-life for recovery of approximately 40 min.
Structure-based drug design (SBDD) and polymer-assisted solution-phase (PASP) library synthesis were used to develop a series of pyrazinone inhibitors of the Tissue Factor/Factor VIIa (TF/VIIa) complex. The crystal structure of a tripeptide-alpha-ketothiazole complexed with TF/VIIa was utilized in a docking experiment to identify the pyrazinone core as a starting scaffold. The pyrazinone core could orient the substituents in the correct spatial arrangement to probe the S1, S2, and S3 pockets of the enzyme. A multistep PASP library synthesis was designed to prepare the substituted pyrazinones varying the P1, P2, and P3 moieties. Hundreds of pyrazinone TF/VIIa inhibitors were prepared and tested in several serine protease enzyme assays involved in the coagulation cascade. The inhibitors exhibited modest activity on TF/VIIa with excellent selectivity over thrombin (IIa) and Factor Xa. The structure-activity relationship of the pyrazinone inhibitors will be discussed and X-ray crystal structures of selected compounds complexed with the TF/VIIa enzyme will be described. This study ultimately led to the synthesis of compound 34, which exhibited 16 nM (IC50) activity on TF/VIIa with >6250 x selectivity vs Factor Xa and thrombin. This potent and highly selective inhibitor of TF/VIIa was chosen for preclinical, intravenous proof-of-concept studies to demonstrate the separation between antithrombotic efficacy and bleeding side effects in a nonhuman primate model of electrolytic-induced arterial thrombosis.
SC-54684A, an orally active antiplatelet drug now in clinical trial, is shown to be a potent, specific fibrinogen binding inhibitor that blocks platelet aggregation to a wide variety of known stimuli and has good bioavailability in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.