Botulinum neurotoxin (BoNT) is produced by Clostridium botulinum and associates with nontoxic neurotoxin-associated proteins to form high-molecular weight progenitor complexes (PCs). The PCs are required for the oral toxicity of BoNT in the context of food-borne botulism and are thought to protect BoNT from destruction in the gastrointestinal tract and aid in absorption from the gut lumen. The PC can differ in size and protein content depending on the C. botulinum strain. The oral toxicity of the BoNT PC increases as the size of the PC increases, but the molecular architecture of these large complexes and how they contribute to BoNT toxicity have not been elucidated. We have generated 2D images of PCs from strains producing BoNT serotypes A1, B, and E using negative stain electron microscopy and single-particle averaging. The BoNT/A1 and BoNT/B PCs were observed as ovoid-shaped bodies with three appendages, whereas the BoNT/E PC was observed as an ovoid body. Both the BoNT/A1 and BoNT/B PCs showed significant flexibility, and the BoNT/B PC was documented as a heterogeneous population of assembly/disassembly intermediates. We have also determined 3D structures for each serotype using the random conical tilt approach. Crystal structures of the individual proteins were placed into the BoNT/A1 and BoNT/B PC electron density maps to generate unique detailed models of the BoNT PCs. The structures highlight an effective platform that can be engineered for the development of mucosal vaccines and the intestinal absorption of oral biologics.hemagglutinin | nontoxic nonhemagglutinin | sialic acid
Bacillus anthracis is a major biological warfare threat. The inhalation form of infection can kill quickly. While antibiotic treatment is effective, if diagnosis is delayed, the rapidly produced toxin may already be present in lethal amounts. This report describes a fast, sensitive, specific and accurate method for detection of active infection by Bacillus anthracis in plasma. One of the virulence factors, anthrax lethal factor, is an endopeptidase present in blood early in the infection. However, the use of peptidic substrates to detect endopetidases is problematic in plasma due to the presence of other proteases and the likelihood of nonspecific cleavage of the substrate. The fluorescently labeled peptide substrate MAPKKide Plus designed in this study is not cleaved by plasma proteases and thus is specific for lethal factor. Three detection strategies are described. Two include enrichment by capture from plasma using lethal factor antibody-coated microtiter plates or similarly coated immuno-tubes. The captured lethal factor is exposed to the MAPKKide Plus, and the amount of cleavage is determined either by HPLC or microplate reader. Concentration of lethal factor using the antibody-coated plates aplnd HPLC allows for detection of less than 5 pg lethal factor/ml of neat plasma after 2 hours of incubation. Using antibody-coated immuno-tubes, 20 pg lethal factor/ml plasma can be detected in 5 hours by a simple end point read of fluorescence in a microplate reader. For a third strategy, the substrate is added directly to diluted plasma, and cleavage is monitored by the increase in fluorescence as a function of time. The limit of detection by this simple method is 25 ng lethal factor/ml of plasma in 15 minutes, 5 ng/ml after 45 minutes, and <1 ng lethal factor/ml of plasma after 5 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.