These results confirm the efficacy of zidovudine prophylaxis and suggest that there are reductions in the rates of perinatal transmission of HIV even with the use of abbreviated regimens that are begun intra partum or in the first 48 hours of life.
Effective reduction in maternal-fetal human immunodeficiency virus-1 (HIV-1) transmission has been achieved by administration of nucleoside reverse transcriptase inhibitors (NRTIs) during pregnancy, and although most exposed children are clinically normal at birth, mitochondrial dysfunction has been reported. To examine mitochondrial integrity on a molecular level, we evaluated mitochondrial morphology by electron microscopy (EM) and mitochondrial DNA (mtDNA) quantity in umbilical cords and cord blood from NRTI-exposed and unexposed human and monkey newborns. Human subjects included infants born to HIV-1-infected mothers who received Combivir (Zidovudine [AZT] plus Lamivudine [3TC]) (n = 9) or AZT plus Didanosine [ddI] (n = 2) during pregnancy, and infants born to HIV-1-uninfected mothers (n = 7). NRTI-exposed Erythrocebus patas monkey dams (n = 3 per treatment group) were given human-equivalent dosing regimens containing 3TC, AZT/3TC, AZT/ddI, or Stavudine (d4T)/3TC during gestation. Four infants born to unexposed patas dams served as controls. Mitochondria in umbilical cord endothelial cells from NRTI-exposed monkey and human infants showed substantial abnormal pathology by EM, the extent of which was quantified from coded photomicrographs and shown to be different (P < 0.05) from the unexposed monkey and human newborns. Significant (P < 0.05) mtDNA depletion was found in umbilical cords from both human and monkey NRTI-exposed infants and in human, but not in monkey, cord blood leukocytes. For umbilical cords, an increase in mitochondrial morphological damage correlated with reduction in mtDNA quantity in fetal monkeys (r = 0.94). The treatment-induced mitochondrial compromise in infant monkeys ranked as follows: d4T/3TC > AZT/ddI > AZT/3TC > 3TC. The study demonstrates that transplacental NRTI exposures induce similar mitochondrial damage in cord blood and umbilical cords taken from retroviral-uninfected monkey infants and from human infants born to HIV-1-infected women.
The genotoxicity of zidovudine (AZT) based treatments was investigated in human H9 lymphoblastoid cells in an in vitro study and in red blood cells (RBCs) from perinatally exposed HIV-1-infected mothers and their infants in an observational cohort study. Exposure of H9 cells for 24 hr to AZT produced dose-dependent increases in Comet assay tail moment (TM) when electrophoresed at pH 13.0, but not at pH 12.1 or pH 8.0, suggesting that DNA damage was via alkali-labile lesions and not double-stranded DNA strand breaks. The TM dose response at pH 13.0 correlated directly with AZT-DNA incorporation determined by AZT-radioimmunoassay. Levels of DNA damage in utero, measured by Comet assay TM, were similar in cord blood mononuclear cells of nucleoside analog-exposed newborns (n = 43) and unexposed controls (n = 40). In contrast, the glycophorin A (GPA) somatic cell mutation assay (which screens for large-scale DNA damage in RBCs) showed clear evidence that GPA N/N variants, arising from chromosome loss and duplication, somatic recombination, and gene conversion, were significantly elevated in mother-child pairs receiving prepartum AZT plus lamivudine (3TC). Cord blood from newborns exposed to AZT-3TC had GPA N/N variant frequencies of 4.7 +/- 0.7 (mean +/- SE) x 10(-6) RBCs (n = 26 infants) compared with 2.2 +/- 0.3 x 10(-6) RBCs for unexposed controls (n = 30 infants; P < 0.001). Elevations in GPA N/N variants generally persisted through 1 year of age in nucleoside analog-exposed children. Overall, the mutagenic effects found in mother-child pairs receiving AZT-based treatments justify their surveillance for long-term genotoxic consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.