Exploring natural plant products as an option to find new chemical entities as anticancer agents is one of the fastest growing areas of research. Recently, in the last decade, essential oils (EOs) have been under study for their use in cancer therapy and the present review is an attempt to collect and document the available studies indicating EOs and their constituents as anticancer agents. This review enlists nearly 130 studies of EOs from various plant species and their constituents that have been studied so far for their anticancer potential and these studies have been classified as in vitro and in vivo studies for EOs and their constituents. This review also highlights in-depth various mechanisms of action of different EOs and their constituents reported in the treatment strategies for different types of cancer. The current review indicates that EOs and their constituents act by multiple pathways and mechanisms involving apoptosis, cell cycle arrest, antimetastatic and antiangiogenic, increased levels of reactive oxygen and nitrogen species (ROS/RNS), DNA repair modulation, and others to demonstrate their antiproliferative activity in the cancer cell. The effect of EOs and their constituents on tumour suppressor proteins (p53 and Akt), transcription factors (NF-κB and AP-1), MAPK-pathway, and detoxification enzymes like SOD, catalase, glutathione peroxidase, and glutathione reductase has also been discussed.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
The antifungal activity of aqueous extract of Cannabis sativa, Parthenium hysterophorus, Urtica dioeca, Polystichum squarrosum and Adiantum venustum was investigated against Alternaria solani, Alternaria zinniae, Curvularia lunata, Rhizoctonia solani and Fusarium oxysporum at different concentrations (5, 10, 15 and 20%). At 20%, maximum antifungal potential was observed with the extracts of C. sativa, which recorded excellent inhibitory activity against C. lunata (100%), A. zinniae (59.68%), followed by leaf extract of P. hysterophorus (50%) against A. solani. The application of botanical extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.
Natural polymer based encapsulation of essential oil (EO) is one of the emerging and challenging area of research in perfumery, cosmetics, flavoring agents, preservatives, therapeutics, etc. The knowledge of formulation techniques and physico-chemical properties of the polymers are the basic requirements for the successful encapsulations of essential oils (EOs). This current review article is focused on a comparative account of various formulation techniques based on their applicability. For the first time, it also reviews various physico-chemical techniques used in the analysis of EO encapsulates to determine their stability, structure, surface morphology, and encapsulation efficiency. Further, the mechanisms involved in the release of EOs from encapsulates, along with various factors affecting their release, have also been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.