The material combination of aluminum and copper is increasingly coming into focus, especially for electrical contact applications. Investigations of different casting processes show that a significant influence for the formation of a material bond is the thermal impact. For high-pressure die casting (HPDC) processes, the impact is quite low, e.g., due to short cycle times. Despite the high efficiency of this technology, currently there are hardly any investigations in this respect. So, the technology was used in this study to produce aluminum–copper compounds and analyze interfacial layers by means of SEM images and EDX measurements. Furthermore, the mechanical and electrical properties of the compounds were determined by means of tensile shear tests and measurements of the electrical conductivity. By modifying specimen geometry, the thermal impact could be increased and, thus, enhanced compound properties were achieved. Overall, compounds of sufficiently high mechanical strength, as well as electrical conductivity, could be produced by HPDC processes, demonstrating the high technical and economic potential of this casting technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.