Due to the continuous progress in the field of vehicle hardware, the condition that a vehicle cannot load a complex algorithm no longer exists. At the same time, with the progress in the field of vehicle hardware, a number of studies have reported exponential growth in the actual operation. To solve the problem for a large number of data transmissions in an actual operation, wireless transmission is proposed for text information (including position information) on the basis of the principles of the maximum entropy probability and the neural network prediction model combined with the optimization of the Huffman encoding algorithm, from the exchange of data to the entire data extraction process. The test results showed that the text-type vehicle information based on a compressed algorithm to optimize the algorithm of data compression and transmission could effectively realize the data compression, achieve a higher compression rate and data transmission integrity, and after decompression guarantee no distortion. Therefore, it is important to improve the efficiency of vehicle information transmission, to ensure the integrity of information, to realize the vehicle monitoring and control, and to grasp the traffic situation in real time.
With the rapid development of sensor technology for automated driving applications, the fusion, analysis, and application of multimodal data have become the main focus of different scenarios, especially in the development of mobile edge computing technology that provides more efficient algorithms for realizing the various application scenarios. In the present paper, the vehicle status and operation data were acquired by vehicle-borne and roadside units of electronic registration identification of motor vehicles. In addition, a motion model and an identification system for the single-vehicle lane-change process were established by mobile edge computing and self-organizing feature mapping. Two scenarios were modeled and tested: lane change with no vehicles in the target lane and lane change with vehicles in the target lane. It was found that the proposed method successfully identified the stochastic parameters in the process of driving trajectory simulation, and the standard deviation between simulation and the measured results obeyed a normal distribution. The proposed methods can provide significant practical information for improving the data processing efficiency in automated driving applications, for solving single-vehicle lane-change applications, and for promoting the formation of a closed loop from sensing to service.
Traffic congestion is a common problem in many countries, especially in big cities. At present, China’s urban road traffic accidents occur frequently, the occurrence frequency is high, the accident causes traffic congestion, and accidents cause traffic congestion and vice versa. The occurrence of traffic accidents usually leads to the reduction of road traffic capacity and the formation of traffic bottlenecks, causing the traffic congestion. In this paper, the formation and propagation of traffic congestion are simulated by using the improved medium traffic model, and the control strategy of congestion dissipation is studied. From the point of view of quantitative traffic congestion, the paper provides the fact that the simulation platform of urban traffic integration is constructed, and a feasible data analysis, learning, and parameter calibration method based on RBF neural network is proposed, which is used to determine the corresponding decision support system. The simulation results prove that the control strategy proposed in this paper is effective and feasible. According to the temporal and spatial evolution of the paper, we can see that the network has been improved on the whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.