In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity.
Wood–plastic composite (WPC) material has been developed rapidly and used widely to replace wood production in recent years. The cutting process of WPC material is the key to directly affect the efficiency of utilization and processing. The infrared thermal imaging system and numerical control machine tool were used in this article to analyze the cutting temperature under different cutting parameters, which was further compared with massoniana wood cutting procedure to provide theoretical basis for WPC material processing. Under certain conditions, the cutting depth was the most important factor on the cutting temperature, followed by spindle speed, while cutting width was the least affected. In the cases of similar processing parameters, although cutting temperature for massoniana wood is always higher than WPCs, the change trends of their cutting temperature are similar. Besides, shear heat moderately affected the cutting temperature during cutting.
Sanding dust is the main source of dust emission during the manufacturing process of medium-density fiberboard (MDF), and particle size and shape characteristics are the fundamental properties influencing its environmental influence and handling behaviors. However, there are few deep and comprehensive researches on the morphology of MDF sanding dust. In this study, the morphological characteristics of MDF sanding dust were explored by sieve and image analyses. It was found that more than 95% of MDF sanding dust was inhalable particles smaller than 100 μm, which poses a considerable potential risk to human health and safety, especially with the presence of other chemical constituents. The particle size span of MDF dust was relatively wide though the particle surface texture was quite uniform. The particle geometric proportion represented by aspect ratio decreased markedly with the reduction of particle size. The larger particles presented typical anisotropic structure, while the smaller ones showed homogeneous appearance, indicating quite complex handling behaviors. In addition, image analysis was found to provide a better insight into the morphological characteristics of MDF sanding dust compared to sieve analysis, and could be a promising dust morphology evaluation technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.