There has been an upsurge of green reductants for the preparation of graphene materials taking consideration of human health and the environment in recent years. In this paper, reduced graphene oxides (RGOs) were prepared by chemical reduction of graphene oxide (GO) with three green reductants, L-ascorbic acid (L-AA), D-glucose (D-GLC) and tea polyphenol (TP), and comparatively characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectra, Raman spectra and electrical conductivity analysis. Results showed that all these three reductants were effective to remove oxygen-containing functional groups in GO and restore the electrical conductivity of the obtained RGO. The RGO sample with L-ascorbic acid as a reductant and reduced with the existence of ammonia had the highest electrical conductivity (9.8 S·cm-1) among all the obtained RGO samples. The mechanisms regarding to the reduction of GO and the dispersion of RGO in water were also proposed. It is the good dispersibility of reduced graphene oxide in water that will facilitate its further use in composite materials and conductive ink.
In recent years, as a result of the large-scale use of stainless steel bars in production and life, people’s demand for stainless steel bars has increased. However, existing research information on stainless steel bars is scant, especially the lack of research on the mechanical properties of duplex stainless steel bars and the bonding properties of duplex stainless steel bars to concrete. Therefore, this paper selects 177 duplex stainless steel bars with different diameters for room temperature tensile test, and then uses mathematical methods to provide suggestions for the values of their mechanical properties. The test results show that the duplex stainless steel bar has a relatively high tensile strength of 739 MPa, no significant yield phase, and a relatively low modulus of elasticity of 1.43 × 105 MPa. In addition, 33 specimens were designed to study the bonding properties of duplex stainless steel bars to concrete. In this paper, the effects of concrete strength, duplex stainless steel reinforcement diameter, the ratio of concrete cover to reinforcing steel diameter, and relative anchorage length on the bond stress were investigated, and a regression model was established based on the experimental results. The results show that, with the concrete strength concrete strength from C25 to C40, the compressive strength of concrete increased by 56.1%, the bond stress increased by 27%; the relative anchorage length has been increased from 3 to 6, the relative anchorage length has doubled, and the bond stress has increased by 13%; and, the ratio of concrete cover to reinforcing steel diameter increased to a certain range on the bond stress has no significant effect and duplex stainless steel reinforcement diameter has little effect on the bond stress. The ratio of concrete cover to reinforcing steel diameter from 3.3 to 4.5 and the bond stress increased by 24.7%. A ratio of concrete cover to reinforcing steel diameter greater than 4.5 has no significant effect on the bond stress, with the average bond stress value of 20.1 MPa. The duplex stainless steel bar diameter has little effect on the bond stress for the diameters of 12 mm, 16 mm, 25 mm duplex stainless steel bar, and their average bond stress is 19.9 MPa.
Wood dust produced in medium-density fiberboard (MDF) processing is a major occupational hazard in wood industry and may damage processing equipment. In many wood processing factories, dust collecting systems need to be optimized for the distributional and morphological characteristics of dust in the workshop so that economical and efficient dust control can be achieved. In this study, weighting, image analysis and scanning electron microscopy (SEM) were applied to explore the effects of different cutting speeds on the distribution and morphology of dust generated in MDF milling. The results showed that most dust particles were less than 100 μm and that the aspect ratios (AR) were between 0.6 and 0.7. There was significant difference in particle number size distribution (PNSD) between the dust at different sampling positions. Less amount of dust was located close to cutting center, and fine dust was more likely to appear far away from cutting center. Cutting speed was associated with PNSD, but had little effect on AR. The findings provide spatial distribution characteristics of MDF dust during milling, which can be helpful for optimizing cutting parameters and locating dust collecting hoods to minimize dust exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.