A nanostructured platform that combines electrospun TiO(2) nanofibers (TiNFs)-deposited substrate and cell-capture agent realizes significant capture of circulating tumor cells (CTCs). The enhanced local topographic interactions between the horizontally packed TiNFs deposited substrates and extracellular matrix scaffolds, in addition to anti-EpCAM/EpCAM biological recognition, contributes to the significantly enhanced capture efficiency compared to flat surfaces.
Biomimetic cell-membrane-camouflaged nanoparticles with desirable features have been widely used for various biomedical applications. However, the current research focuses on single cell membrane coating and using multiple cell membranes for nanoparticle functionalization is still challenging. In this work, platelet (PLT) and leukocyte (WBC) membranes are fused, PLT-WBC hybrid membranes are coated onto magnetic beads, and then their surface is modified with specific antibodies. The resulting PLT-WBC hybrid membrane-coated immunomagnetic beads (HM-IMBs) inherit enhanced cancer cell binding ability from PLTs and reduce homologous WBC interaction from WBCs, and are further used for highly efficient and highly specific isolation of circulating tumor cells (CTCs). By using spiked blood samples, it is found that, compared with commercial IMBs, the cell separation efficiency of HM-IMBs is improved to 91.77% from 66.68% and the cell purity is improved to 96.98% from 66.53%. Furthermore, by using the HM-IMBs, highly pure CTCs are successfully identified in 19 out of 20 clinical blood samples collected from breast cancer patients. Finally, the robustness of HM-IMBs is verified in downstream CTC analysis such as the detection of PIK3CA gene mutations. It is anticipated that this novel hybrid membrane coating strategy will open new possibilities for overcoming the limitations of current theranostic platforms.
The clinical practice of oncology is being transformed by molecular diagnostics that will enable predictive and personalized medicine. Current technologies for quantitation of the cancer proteome are either qualitative (e.g., immunohistochemistry) or require large sample sizes (e.g., flow cytometry). Here, we report a microfluidic platform, Microfluidic Image Cytometry (MIC), capable of quantitative, single-cell proteomic analysis of multiple signaling molecules using only 1,000-2,800 cells. Using cultured cell lines, we demonstrate simultaneous measurement of four critical signaling proteins (EGFR, PTEN, phospho-Akt and phospho-S6) within the oncogenic PI3K/Akt/mTOR signaling pathway. To demonstrate the clinical application of the MIC platform to solid tumors, we analyzed a panel of 19 human brain tumor biopsies, including glioblastomas. Our MIC measurements were validated by clinical immunohistochemistry and confirmed the striking inter- and intra-tumoral heterogeneity characteristic of glioblastoma. To interpret the multiparameter, single-cell MIC measurements, we adapted bioinformatic methods including self-organizing maps that stratify patients into clusters which predict tumor progression and patient survival. Together with bioinformatic analysis, the MIC platform represents a robust, enabling in vitro molecular diagnostic technology for systems pathology analysis and personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.