Study ini membandingkan kuat hancur, berat volume antara beton ringan dengan beton dengan mengganti sebagian semen (PC) dengan limbah pertanian. Limbah pertanian yang dimaksud adalah sekam padi dan ampas tebu. Penggunaan limbah pertanian tersebut sebaga material pengganti semen dikarenakan mempunyai sifat pozzolan yang cukup tinggi. Pemakaian limbah pertanian ini dengan membakar ampas tebu dan sekam padi dengan suhu tertentu sehingga menjadi abu. Limbah tebu diambil dari Pabrik Gula Prajekan Bondowoso, dibakar dengan suhu 8000C selama 8 jam. Limbah Padi diambil dari limbah Pabrik Padi di Kalisat Jember, dibakar dengan suhu 8500C selama 45 menit. Kandungan silika dari hasil pembakaran tersebut masing-masing sebesar 59,5% dan 79,5% . Prosentase pengganti sebagian PC sebesar 5%, 10%, 15% dan 20%, dengan perbandingan campuran abu ampas tebu (AAT) dan abu sekam padi (ASP) adalah 1:1. Pengujian dilakukan pada umur 28 hari dengan bentuk benda uji silender berukuran 10x20 cm. Hasil kuat hancur tertinggi pada benda uji dengan subsitusi PC sebesar 5% dan berat volume yang terendah pada benda uji dengan pengantian semen sebesar 20%. Effect of Cement Substitution with Agricultural Waste on Lightweight Structural ConcreteThis study compares the shattering strength, volume weight between lightweight concrete and concrete by replacing part of the Portland cement (PC) with agricultural waste. The agricultural waste in question is rice husk and sugarcane bagasse. The use of agricultural waste is as a substitute for cement because it has quite high pozzolanic properties. Use of this agricultural waste by burning sugarcane bagasse and rice husk with a certain temperature so that it becomes ash. Sugarcane waste is taken from Bondowoso Prajekan Sugar Mill, burned at 8000C for 8 hours. Rice waste is taken from the rice factory waste in Kalisat Jember, burned at 8500C for 45 minutes. The silica content of the combustion products was 59.5% and 79.5%, respectively. The percentage of partial PC replacement is 5%, 10%, 15%, and 20%, with a ratio of bagasse ash (BA) to rice husk ash (RHA) is 1: 1. The test was carried out at 28 days in the form of a 10 x 20 cm slender test object. The highest yield of crushing strength in specimens with PC substitution of 5% and the lowest volume weight in specimens with cement replacement of 20%.
Developments in modern times have grown rapidly, this can be seen from the rapid development. Along with the increasing scale of development in the world of construction, more and more concrete is needed effectively, practically, and in the future. The strength of concrete is strongly influenced by the quality of the materials, admixtures, the working process, and the curing of the concrete. Concrete with the addition of an accelerator has higher compressive strength, this is due to the accelerator reaction which can accelerate the binding process and the development of the initial compressive strength of the concrete. Concrete with direct immersion treatment has large compressive strength. There are several methods of treating concrete, including watering and high temperature. This study used a fixed accelerator proportion of 3 % of the weight of cement with a test time of 7 and 28 days. The treatment method used is open space, immersion, high temperature at temperatures of 25 ºC, 30 ºC, 35 ºC, 40 ºC and 45 ºC. From the results of the research, there are differences in characteristics between normal concrete and concrete with the addition of an accelerator. Concrete with a high-temperature treatment method at a temperature of 45 ºC produces the highest strong pressure. This is caused by the higher the treatment temperature, the higher the rate of hydration process that affects the compressive strength of the concrete.
The earthquake is a serious threat in the field of construction in archipelagic countries like Indonesia. The heavier the building is, the greater the earthquake force produced. Lightweight concrete is a concrete that has a light density and contains lightweight aggregate. According to SNI-03-3449-2002 lightweight concrete has a weight of not more than 1850 kg / m3. The innovations used are not limited to the addition of aluminum powder additives but also the utilization of waste as a concrete material as an alternative in waste utilization. The result of the addition of tile powder used as filler in each variation can not increase the value of compressive strength but all the result of the test object still meet the criteria of light concrete that is under 1850 kg / m3. The increase in compressive strength occurs in variations 3 and 5 but does not exceed variation 1. In the 5x5 cm paste specimen, the material is mixed without the use of aluminum powder, the results are more optimal, the data obtained is more accurate, this is due to the method of making pasta with only cement and tile dust no material is wasted.
The abundance of tile waste is used as a material innovation in the manufacture of concrete and paving. However, the results of research done by new researchers mostly only as filler material. The paving block which was added as a cement powder substitution material decreased compressive strength along with the tile waste percentage addition (Ridwan, 2017). Thus, researchers try to optimize tile waste treatment before being used in the paving blocks with raise the fuel temperature up to 900°C to obtain more amorphous pozzoland. Waste tile contains SiO?, CaAl?Si?O8, Fe?O ? and Mg? (SiO 4) on the testing of XRD so compliant as pozzoland material. This research used powder waste as a material of cement substitution with 0%, 5%, 7%, and 10% of cement weight with variation of fuel temperature 750 °C, 800 °C, 850 °C and 900°C. The results showed that by increasing the fuel temperature up to 900°C compressive strength increased by 5.9% and water absorption decreased by 14.5%. However, by increasing the percentage of tile waste, compressive strength decreased up to 7.2%. Testing is supported by the SEM results wich indicate that the greater percentage used then the paving surface is also more hollow.
The column has a different cross-sectional capacity based on the direction of the X and Y moments based from the cross section. This research analyzes the performance of reinforced concrete by transformis the square column that already exists into a rectangular column with the function of the building is apartment. The result of this research was to find out performance of rectangular column on the behavior of high building structure. This Research analyzes two shapes of column rectangular and Square with the same area of concrete and reinforcement with all sides equal. Structure will be modeled by structural analysis program. Analyze using interaction diagram by structural analysis program. to find out the collapse of the column. The results of this Research indicates that axial load in any cross section has the same values, as long as the column has the same cross-sectional area and total of reinforcement area. Moment and shear loads with rectangular have a smaller Force on the strong axis X, while in weak axis Y have a greater Force. The displacement on the strong axis X with Square column have a smaller deviations of 10,81%, while on the weak axis Y have a greater deviations of 12,05%. Kolom memiliki kapasitas penampang yang berbeda berdasarkan arah momen X dan Y jika dilihat dari sisi penampangnya. Penelitian ini menganalisis kinerja struktur beton bertulang dengan merubah bentuk persegi sama sisi menjadi bentuk persegi panjang dengan fungsi bangunan sebagai apartemen. Tujuan penelitian ini untuk mengetahui kinerja kolom dengan bentuk persegi panjang terhadap perilaku struktur gedung seperti simpangan dan gaya dalam pada gedung dalam menerima beban gempa. Penelitian ini dilakukan dengan dua bentuk penampang, yaitu persegi sama sisi dan persegi panjang dengan luas penampang beton serta luas tulangan sama dengan tulangan merata. Struktur dimodelkan menggunakan program bantu struktur. Menganalisis kolom menggunakan diagram interaksi dengan program bantu struktur untuk mengetahui letak keruntuhan kolom. Hasil analisis menunjukkan gaya aksial dalam bentuk penampang apapun memiliki hasil yang sama, selama memiliki luas penampang kolom dan luas tulangan total yang sama. Gaya momen dan gaya geser kolom persegi panjang menghasilkan gaya yang lebih kecil pada sumbu kuat X, sedangkan pada sumbu lemah Y menghasilkan gaya yang lebih besar. Simpangan struktur antar lantai pada sumbu kuat X dengan penampang kolom persegi sama sisi menghasilkan simpangan yang lebih kecil 10,81%, sedangkan pada sumbu lemahnya menghasilkan simpangan lebih besar yaitu 12,05%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.