Autophagy is an essential process for physiological homeostasis, but its role in viral infection is only beginning to be elucidated. We show here that the Atg5-Atg12 conjugate, a key regulator of the autophagic process, plays an important role in innate antiviral immune responses. Atg5-deficient mouse embryonic fibroblasts (MEFs) were resistant to vesicular stomatitis virus replication, which was largely due to hyperproduction of type I interferons in response to immunostimulatory RNA (isRNA), such as virus-derived, double-stranded, or 5 -phosphorylated RNA. Similar hyperresponse to isRNA was also observed in Atg7-deficient MEFs, in which Atg5-Atg12 conjugation is impaired. Overexpression of Atg5 or Atg12 resulted in Atg5-Atg12 conjugate formation and suppression of isRNA-mediated signaling. Molecular interaction studies indicated that the Atg5-Atg12 conjugate negatively regulates the type I IFN production pathway by direct association with the retinoic acid-inducible gene I (RIG-I) and IFN- promoter stimulator 1 (IPS-1) through the caspase recruitment domains (CARDs). Thus, in contrast to its role in promoting the bactericidal process, a component of the autophagic machinery appears to block innate antiviral immune responses, thereby contributing to RNA virus replication in host cells.innate immunity ͉ signal transduction ͉ type I interferon
Although more than 20 putative members have been assigned to the nucleotide-binding and oligomerization domain-like receptor (NLR) family, their physiological and biological roles, with the exception of the inflammasome, are not fully understood. In this article, we show that NLR members, such as NLRC4, NLRP3, NLRP4, and NLRP10 interact with Beclin1, an important regulator of autophagy, through their neuronal apoptosis inhibitory protein, MHC class II transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein domain. Among such NLRs, NLRP4 had a strong affinity to the Beclin1 evolutionally conserved domain. Compromising NLRP4 via RNA interference resulted in upregulation of the autophagic process under physiological conditions and upon invasive bacterial infections, leading to enhancement of the autophagic bactericidal process of group A streptococcus. NLRP4 recruited to the subplasma membrane phagosomes containing group A streptococcus and transiently dissociated from Beclin1, suggesting that NLRP4 senses bacterial infection and permits the initiation of Beclin1-mediated autophagic responses. In addition to a role as a negative regulator of the autophagic process, NLRP4 physically associates with the class C vacuolar protein-sorting complex, thereby negatively regulating maturation of the autophagosome and endosome. Collectively, these results provide novel evidence that NLRP4, and possibly other members of the NLR family, plays a crucial role in biogenesis of the autophagosome and its maturation by the association with regulatory molecules, such as Beclin1 and the class C vacuolar protein-sorting complex.
All mammalian cells are equipped with large numbers of sensors for protection from various sorts of invaders, who, in turn, are equipped with molecules containing pathogen-associated molecular patterns (PAMPs). Once these sensors recognize non-self antigens containing PAMPs, various physiological responses including inflammation are induced to eliminate the pathogens. However, the host sometimes suffers from chronic infection or continuous injuries, resulting in production of self-molecules containing damage-associated molecular patterns (DAMPs). DAMPs are also responsible for the elimination of pathogens, but promiscuous recognition of DAMPs through sensors against PAMPs has been reported. Accumulation of DAMPs leads to massive inflammation and continuous production of DAMPs; that is, a vicious circle leading to the development of autoimmune disease. From a vaccinological point of view, the accurate recognition of both PAMPs and DAMPs is important for vaccine immunogenicity, because vaccine adjuvants are composed of several PAMPs and/or DAMPs, which are also associated with severe adverse events after vaccination. Here, we review as the roles of PAMPs and DAMPs upon infection with pathogens or inflammation, and the sensors responsible for recognizing them, as well as their relationship with the development of autoimmune disease or the immunogenicity of vaccines.
Agonists for TLR9 and Stimulator of IFN Gene (STING) act as vaccine adjuvants that induce type-1 immune responses. However, currently available CpG oligodeoxynucleotide (ODN) (K-type) induces IFNs only weakly and STING ligands rather induce type-2 immune responses, limiting their potential therapeutic applications. Here, we show a potent synergism between TLR9 and STING agonists. Together, they make an effective type-1 adjuvant and an anticancer agent. The synergistic effect between CpG ODN (K3) and STING-ligand cyclic GMP–AMP (cGAMP), culminating in NK cell IFN-γ (type-II IFN) production, is due to the concurrent effects of IL-12 and type-I IFNs, which are differentially regulated by IRF3/7, STING, and MyD88. The combination of CpG ODN with cGAMP is a potent type-1 adjuvant, capable of inducing strong Th1-type responses, as demonstrated by enhanced antigen-specific IgG2c and IFN-γ production, as well as cytotoxic CD8+ T-cell responses. In our murine tumor models, intratumoral injection of CpG ODN and cGAMP together reduced tumor size significantly compared with the singular treatments, acting as an antigen-free anticancer agent. Thus, the combination of CpG ODN and a STING ligand may offer therapeutic application as a potent type-II IFN inducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.