The three major glutamine tRNAs of Tetrahymena thermophila were isolated and their nucleotide sequences determined by post‐labeling techniques. Two of these tRNAsGln show unusual codon recognition: a previously isolated tRNAGlnUmUA and a second species with CUA in the anticodon (tRNAGlnCUA). These two tRNAs recognize two of the three termination codons on natural mRNAs in a reticulocyte system. tRNAGlnUmUA reads the UAA codon of α‐globin mRNA and the UAG codon of tobacco mosaic virus (TMV) RNA, whereas tRNAGlnCUA recognizes only UAG. This indicates that Tetrahymena uses UAA and UAG as glutamine codons and that UGA may be the only functional termination codon. A notable feature of these two tRNAsGln is their unusually strong readthrough efficiency, e.g. purified tRNAGlnCUA achieves complete readthrough over the UAG stop codon of TMV RNA. The third major tRNAGln of Tetrahymena has a UmUG anticodon and presumably reads the two normal glutamine codons CAA and CAG. The sequence homology between tRNAGlnUmUG and tRNAGlnUmUA is 81%, whereas that between tRNAGlnCUA and tRNAGlnUmUA is 95%, indicating that the two unusual tRNAsGln evolved from the normal tRNAGln early in ciliate evolution. Possible events leading to an altered genetic code in ciliates are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.