Background and objectives Reduced muscle mass and strength are prevalent conditions in dialysis patients. However, muscle strength and muscle mass are not congruent; muscle strength can diminish even though muscle mass is maintained or increased. This study addresses phenotype and mortality associations of these muscle dysfunction entities alone or in combination (i.e., concurrent loss of muscle mass and strength/mobility, here defined as sarcopenia).Design, setting, participants, & measurements This study included 330 incident dialysis patients (203 men, mean age 53613 years, and mean GFR 762 ml/min per 1.73 m 2 ) recruited between 1994 and 2010 and followed prospectively for up to 5 years. Low muscle mass (by dual-energy x-ray absorptiometry appendicular mass index) and low muscle strength (by handgrip) were defined against young reference populations according to the European Working Group on Sarcopenia in Older People.Results Whereas 20% of patients had sarcopenia, low muscle mass and low muscle strength alone were observed in a further 24% and 15% of patients, respectively. Old age, comorbidities, protein-energy wasting, physical inactivity, low albumin, and inflammation associated with low muscle strength, but not with low muscle mass (multivariate ANOVA interactions). During follow-up, 95 patients (29%) died and both conditions associated with mortality as separate entities. When combined, individuals with low muscle mass alone were not at increased risk of mortality (adjusted hazard ratio [HR], 1.23; 95% confidence interval [95% CI], 0.56 to 2.67). Individuals with low muscle strength were at increased risk, irrespective of their muscle stores being appropriate (HR, 1.98; 95% CI, 1.01 to 3.87) or low (HR, 1.93; 95% CI, 1.01 to 3.71).Conclusions Low muscle strength was more strongly associated with aging, protein-energy wasting, physical inactivity, inflammation, and mortality than low muscle mass. Assessment of muscle functionality may provide additional diagnostic and prognostic information to muscle-mass evaluation.
Geobacter sulfurreducens is capable of anaerobic respiration with Fe(III) as a terminal electron acceptor via a membrane-bound Fe(III) reductase activity associated with a large molecular mass cytochrome c. This cytochrome was purified by detergent extraction of the membrane fraction, Q-Sepharose ion-exchange chromatography, preparative electrophoresis, and MonoQ ion-exchange chromatography. Spectrophotometric analysis of the purified cytochrome reveals a c-type haem, with no evidence of haem a, haem b or sirohaem. The cytochrome has an M(r) of 89000 as determined by denaturing PAGE, and has an isoelectric point of 5.2 as determined by analytical isoelectric focusing. Dithionite-reduced cytochrome can donate electrons to Fe(III)-nitrilotriacetic acid and synthetic ferrihydrite, thus demonstrating that the cytochrome has redox and thermodynamic properties required for reduction of Fe(III). Analysis using cyclic voltammetry confirmed that the reduced cytochrome can catalytically transfer electrons to ferrihydrite, further demonstrating its ability to be an electron transport mediator in anaerobic Fe(III) respiration. Sequence analysis of a cloned chromosomal DNA fragment revealed a 2307 bp open reading frame (ferA) encoding a 768 amino acid protein corresponding to the 89 kDa cytochrome. The deduced amino acid sequence (FerA) translated from the open reading frame contained 12 putative haem-binding motifs, as well as a hydrophobic N-terminal membrane anchor sequence, a lipid-attachment site and an ATP/GTP-binding site. FerA displayed 20% or less identity with amino acid sequences of other known cytochromes, although it does share some features with characterized polyhaem cytochromes c.
Plasma concentrations of sRAGE, S100A12 and the ratio S100A12/sRAGE, are markedly elevated in CKD 5 patients starting on dialysis as well as in CKD 3-4 patients and prevalent dialysis patients suggesting that these alterations are typical for patients with moderate or severe CKD. In CKD 5 patients, an increased concentration of S100A12 are associated with inflammation, comorbidities and increased mortality risk whereas no such associations were observed for sRAGE. These results suggest that while high plasma S100A12 is an independent predictor of increased mortality risk, sRAGE does not seem to be a valid risk marker in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.